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Abstract—Facial images with low quality, subjective annota-
tion, severe occlusion, and rare subject identity can lead to the
existence of outlier samples in facial expression datasets. These
outlier samples are usually far from the center of the dataset
in the feature space, resulting in huge differences in feature
distribution, which severely restricts the performance of cross-
dataset facial expression recognition (FER). To eliminate the
influence of outlier samples on cross-dataset FER, we propose
an unsupervised domain adaptation (UDA) method called Sample
Self-Revised Network (SSRN), which 1) dynamically detects the
outlier level of each sample in the source domain to reduce the
disturbance of outlier samples to the model training, as well
as 2) adaptively revises outlier samples in the source domain
to improve transferability of the learned features. Experimental
results show that our SSRN outperforms both classic deep UDA
methods and state-of-the-art cross-dataset FER results.

Index Terms—Cross-dataset facial expression recognition, fa-
cial expression recognition, unsupervised domain adaptation,
transfer learning

I. INTRODUCTION

Facial expressions play an immeasurable role in inter-
personal communication because they can visually convey
human beings’ emotional conditions. Therefore, increasing
researchers have paid attention to the research of facial ex-
pression recognition (FER) and have proposed lots of effective
methods [1]–[8]. Currently, most FER methods are designed
and evaluated under an ideal assumption that the training
and testing facial expression images come from the same
dataset. However, in practical scenarios, the training and
testing samples usually belong to different datasets. In this
case, the performance of most aforementioned FER methods
may drop sharply due to the feature distribution mismatch

*Corresponding authors

existing between the training and testing sets. This thus brings
a greater challenge on FER tasks, i.e., cross-dataset FER.

So as to deal with cross-dataset FER, current mainstream
approaches treat it as an Unsupervised domain adaptation
(UDA) problem and design corresponding methods. For in-
stance, Li et al. [9] proposed a Deep Emo-transfer Network
(DETN), which utilizes Re-weighted Maximum Mean Dis-
crepancy (MMD) [10] to improve the generalization perfor-
mance of the model. Zhou et al. [11] proposed an Uncertainty-
Aware cross-dataset facial Expression Transfer Network (UA-
ETN), which can enhance the generalization ability of cross-
dataset FER by aligning the marginal distribution and class-
conditional distribution. Wang et al. [12] utilized additional
data generated by the Generative Adversarial Network (GAN)
to optimize the cross-dataset performance of FER. However, it
should be pointed out that several interference factors shown
in Fig. 1, e.g., subjective annotations, occlusion, illumination,
and racial difference, may produce some outliers in the facial
expression samples. These outlier samples inevitably break
the modeling of the relationship between the source domain
and its corresponding label information in dealing with cross-
dataset FER, which leads to the UDA models failing to learn
the discriminative facial expression features. In this case, the
UDA models cannot cope with the cross-database FER tasks,
although they successfully eliminate the feature distribution
difference between the source and target domains with the
help of a well-designed strategy. Therefore, it is important to
consider the outlier samples in dealing with cross-dataset FER
tasks.

Recently, outlier problems have been focused on conven-
tional FER tasks, and numerous methods have been proposed
to handle outlier samples. For example, Wang et al. [13] con-
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sidered the outlier samples produced by the incorrect labeling
and raised the Self-Cure Network (SCN) to cope with FER.
The basic idea of SCN is to suppress these outlier samples in
the model learning by seeking and relabeling them from the
training facial expression samples. Zeng et al. [14] indicated
the outlier samples caused by inconsistent annotations among
different FER datasets and proposed an Inconsistent Pseudo
Annotations to Latent Truth (IPA2LT) framework. IPA2LT ar-
tificially creates outlier samples by attaching multiple pseudo-
labels to the samples, which are labeled by humans or the
learned models, to learn the potential mapping between images
and truth. By means of this latent mapping, the model can
obtain better performance from multiple datasets with incon-
sistent annotations. Inspired by the success of the above works,
in this paper, we take outlier samples in the source domain into
consideration while exploring cross-dataset FER and further
propose an effective network termed as Sample Self-Revised
Network (SSRN). Specifically, the proposed SSRN consists of
three essential modules: Outlier Perception Module, Outlier
Perception Coefficient (OPC) Revision Module, and Feature
Transfer Module. Given a batch of samples from source and
target domains, respectively, the CNN Backbone can be used
to extract facial features. Then the Outlier Perception and
the OPC Revision Modules are used to dynamically perceive
outlier samples in the source domain and mitigate the influence
of outlier samples on the model training with the weighted
cross-entropy loss [15]. After that, the well-designed Feature
Transfer Module enforces the outlier samples to share the same
or similar feature distribution with the source domain to adap-
tively revise the distribution of outlier samples in the source
domain. In addition, features of source and target domains can
also be aligned to learn more robust domain invariant features
with the help of the Feature Transfer Module.

In summary, the main contributions in this paper include
three folds:

1) To the best of our knowledge, this is the first work
to consider the outlier samples in dealing with cross-dataset
FER tasks, and we propose a novel deep domain adaptation
method called Sample Self-Revised Network (SSRN), which
fully considers the outliers existing in the source domains.

2) In the proposed SSRN model, we elaborately design
a set of modules to respectively seek and revise outliers in
source domains and align the revised source domain and the
target one. Thus, the SSRN model can learn better domain-
invariant features to describe facial expressions and have more
promising performance in dealing with cross-dataset FER.

3) Extensive cross-dataset FER experiments across four
public datasets are conducted to evaluate the proposed SSRN.
Additional cross-dataset experiment beyond FER further indi-
cates the strong applicability of our SSRN.

II. PROPOSED METHOD

To solve the influence of outlier samples on cross-dataset
FER, we propose a simple yet effective method called Sample
Self-Revise Network (SSRN). Firstly, the pipeline of the
proposed SSRN is presented in subsection II-A, and then we

Fig. 1: Visualization of Outlier samples in RAF-DB dataset
by t-SNE. We first randomly select 1000 samples from RAF-
DB dataset and extract their 512-dimensional features in the
last layer of ResNet-18. It is clear to see that several outlier
samples indeed exist in the dataset, where the RED, BLUE,
and BLACK Rectangle Marquees highlight the samples with
low quality, subjective annotation, and severe occlusion, re-
spectively.

introduce three important components of the SSRN in detail
in subsections II-B–II-D below, respectively.

A. Overview of SSRN

SSRN consists of three crucial modules: Outlier Perception,
Outlier Perception Coefficient (OPC) Revision, and Feature
Transfer shown in Fig.2. These modules aim to reduce or elim-
inate the influence of outlier samples on cross-dataset FER.
Outlier Perception and OPC Revision Modules are utilized
to dynamically detect outlier samples so as to suppress the
contribution of outlier samples to the model training. Further,
the Feature Transfer Module can revise outlier samples adap-
tively to obtain more robust domain invariant features. Detailed
implementation will be described in the following part of this
section. Before that, several necessary notations are introduced
in the following, including source features and target features,
which are denoted by Fs =

[
fs1, f

s
2, · · · , f

s
Ns

]
∈ RD×Ns and

Ft =
[
f t1, f

t
2, · · · , f

t
Nt

]
∈ RD×Nt . Ns and Nt are the number

of source and target datasets, and D represents the dimension
of feature vectors of source and target samples.

B. Outlier Perception

Outlier Perception is used to perceive the level of outlier
samples in the source domain. It is generally recognized
that facial images with low resolution or serious occlusion
will be given a high level, and unambiguous images will
be assigned to a low level. Outlier Perception contains a
fully connected layer and a sigmoid activation function which
takes the feature Fs as input and considers the output
scalar αi (i ∈ 1, 2, · · · ,N) as the Outlier Perception Coeffi-
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Fig. 2: The outline of SSRN: orange and green rectangular blocks represent the source and target domains. The red and yellow
blocks indicate the features from high-coefficient group and low-coefficient group in the source domain. The orange and green
flows represent processes for source and target domains, respectively.

cient (OPC) of the image. Its implementation is formulated
as:

αi = σ
(
wT
opf

s
i

)
, (1)

where σ (·) represents the sigmoid activation function, and
wop represents parameters of the fully connected layer. The
output α of the above formula is inversely proportional to the
outlier level of each sample, which means the higher the image
quality or the more consistent the annotation is, the higher α
will be assigned; conversely, the lower the image quality is,
the lower corresponding α will be.

A suitable loss function [15] is chosen to adjust the contri-
bution of source data with different OPC. The aforementioned
loss function is termed as Outlier Perception Loss (OP-Loss),
which is formulated as,

qij =
eαie

T
j W

T
clsf

s
i∑C

k=1 e
αieT

kW
T
clsf

s
i

, (2)

LOP = − 1

N

N∑
i=1

C∑
j=1

pij log qij , (3)

where pij and qij represent the ground truth and the prediction
of the j-th class of the i-th sample, respectively, ej is a one-hot
vector, whose j-th element is one and the others equal to zero.
Wcls represents parameters of the classifier. By employing the
weighted cross-entropy loss function, the model can reduce the
interference of outlier samples to the model training and pay
more attention to the samples with low outlier levels.

C. OPC Revision

The aforementioned Outlier Perception Module can perceive
the level of outlier samples in the source domain. To further
guarantee that the meaningful mapping relationship between
facial expression features and outlier level can be learned

correctly, the OPC Revision Module is proposed to revise and
constrain the α generated from the Outlier Perception Module.
The module first takes the OPC of each sample in the source
domain as input and then arranges them in descending order.
After that, it divides them into the high-coefficient and low-
coefficient groups by a certain ratio β. In addition, a newly
designed loss function, i.e., OPC Revision Loss (OR-Loss),
is proposed to make sure that the mean value of the high-
coefficient group is higher than the low-coefficient group with
a certain margin, which is formulated as,

LOR = max {0,Margin− (αH − αL)} , (4)

where Margin represents the set margin between the mean
value of the high-coefficient and low-coefficient groups. αH
and αL represent mean values of the high-coefficient and low-
coefficient groups calculated by

αH =
1

M

M∑
i=1

αi (5)

and

αL =
1

Ns −M

Ns∑
i=M+1

αi, (6)

where the number of samples in group high-coefficient and
low-coefficient is M = Ns × β and Ns −M , respectively.

D. Feature Transfer

With the help of the Outlier Perception Module and OPC
Revision Module, the model can learn the OPC of each sample
relative to the sample feature center in the source domain.
However, outlier samples could make the model learn the
incorrect facial expression features and deter the model from
aligning the features in the source and the target domain,
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which makes it more difficult for the model to learn domain
invariant features. Therefore, the Feature Transfer Module is
proposed to mitigate these problems. Before introducing the
implementation of the Feature Transfer Module in detail, let
us introduce some necessary theoretical bases.

1) Preliminary: As the most widely used loss function in
domain adaptation, Maximum Mean Discrepancy (MMD) [10]
is mainly applied for comparing distributions between two
domains [16], which can be formulated as:

MMD2 (X,Y ) =

∥∥∥∥∥∥ 1n
n∑
i=1

φ (xi)−
1

m

m∑
j=1

φ (yj)

∥∥∥∥∥∥
2

H

, (7)

where xi and yj represent the sample from domain X and
Y , n and m represent the number of samples in the domain
X and Y . H denotes the Reproducing Kernel Hilbert Space
(RKHS). Projecting the data into H by the mapping function
φ (·), we can transform the inner product of function in the
RKHS to the form of kernel function:

K (x, y) = 〈φ (x) , φ (y)〉H , (8)

where K (x, y) represents the kernel function. In most UDA
tasks [17], [18], the most commonly used kernel function is
Gaussian kernel function:

K (x, y) = e
−‖x−y‖2

2σ2 , (9)

which can map the data to the infinite-dimensional space. [19]
proposed the unbiased estimation expression of MMD after
expanding the square of the (7):

MMD2 (X,Y ) =
1

n2

n∑
i=1

n∑
i′=1

K (xi, xi′)

+
1

m2

m∑
j=1

m∑
j′=1

K (yj , yj′)

− 2

nm

n∑
i=1

m∑
j=1

K (xi, yj) .

(10)

In addition, we further replace MMD with single fixed ker-
nel by multi-kernel MMD (MK-MMD) [10], which can be
formulated as:

K :=

{
K =

d∑
u=1

βuKu : βu ≥ 0,∀u ∈ {1, . . . , d}

}
. (11)

MK-MMD obtains the optimal kernel by linearly weighting
multiple kernels {ku}du=1 with weight βu, which is more
powerful in representation compared with the single-kernel
MMD.

2) Feature Transfer Module: The Feature Transfer Module
embeds MK-MMD in the task-specific feature layer of the
deep network, which can be expressed as:

LMMD = MMD(FsH ,F
s
L) +MMD

(
Fs,Ft

)
, (12)

where Fs
H and Fs

L represent the feature vectors of the high-
coefficient and low-coefficient groups in the source domain.

The first half of (12) reduces the feature distribution distance
of high-coefficient group and low-coefficient group samples in
the source domain, which revises outlier samples detected by
Outlier Perception and OPC Revision Modules. The second
half of the (12) further ensures that the target domain features
can be aligned with the newly generated source domain
features so that the model can learn more robust domain
invariant features.

We accumulate (3), (4) and (12) as the final formulation of
the proposed SSRN, which can be written as:

L = LOP + λLMMD + γLOR, (13)

where λ and γ are the trade-off factors to balance the proposed
modules.

III. EXPERIMENT

In this section, we first describe four public facial expression
datasets and then present our experiment protocol. Finally, we
demonstrate the implementation details of our cross-dataset
FER experiments.

A. Datasets

Four public available facial expression datasets, including
FER2013 [20], RAF-DB [21], CK+ [22], and JAFFE [23] are
applied to evaluate the proposed SSRN (shown in Fig.3).

FER2013 is a large-scale facial expression dataset con-
sisting of 35,887 facial images of size 48×48 pixels. Each
image is labeled by one of seven basic expression categories,
i.e., Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral.
The dataset is further divided into 28,709 training samples,
3,589 validation samples, and 3,589 testing samples. In the
experiments, we adopt all the original facial images.

RAF-DB is a real-world facial expression dataset that
contains 19,672 facial images collected from the Internet. We
use its single-labeled subset consisting of 15,339 samples,
which is divided into a training set of 12,271 images and a
test set of 3,068 images, and each sample was assigned one
of seven basic expressions.

Extended Cohn-Kanade (CK+) is a lab-controlled dataset
that has 123 subjects and records their 593 facial expression
video clips. Each video clip is annotated by one of six
expressions, including Angry, Disgust, Fear, Happy, Sad, and
Surprise. In the experiments, we extract the last peak frame
from each labeled video clip to serve as expression samples
and randomly choose the first frame from 50 sequences as the
neutral ones [9].

JAFFE is also a lab-controlled dataset that contains 213
grayscale images from 10 Japanese female expressers. Ex-
pressers were asked to pose seven facial expressions. All
images in the JAFFE are employed in our experiments.

Sample statistics of the aforementioned datasets are listed
in Table I.
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Fig. 3: Sample images from FER2013, RAF-DB, CK+ and
JAFFE datasets.

TABLE I: Sample statistics of RAF-DB, JAFFE, CK+ and
FER2013 for Experiments

Dataset Angry Disgust Fear Happy Sad Surprise Neutral Total

FER2013 4953 547 5121 8989 6077 4002 6198 35887
RAF-DB 867 877 355 5957 2460 1619 3204 15339

CK+ 45 59 25 69 28 83 50 359
JAFFE 30 29 32 31 31 30 30 213

B. Experiment Protocol

To evaluate the proposed SSRN, we resize all facial images
to 112×112 pixels and then design a total of 12 experi-
ments across the above four datasets in pairs, which are
denoted by R→J, R→C, R→F, J→R, J→C, J→F, C→R, C→J,
C→F, F→R, F→J, and F→C,where R, J, C, and F are the
abbreviation of RAF-DB, JAFFE, CK+, and FER2013, and
left and right sides of → represent the source domain and
target domain respectively. As for the performance metric,
we employ the recognition accuracy, which is calculated by
T/N×100%, where T is the number of correct predictions and
N is the total sample number in the target dataset.

C. Implementation Details

During the experiment, our SSRN is trained on 2 Nvidia
Titan X GPUs, with the implementation in Pytorch. The CNN
backbone of SSRN is ResNet-18 [24], which was pre-trained
on ImageNet dataset [25] and the facial features with the
dimension of 512 are extracted after the average pooling layer
of ResNet-18. In the pre-processing stage, face images are
detected and aligned by MTCNN [26], and further transformed
to gray-scale. We argue the image by resizing the image to
128 × 128 and then randomly crop to 112 × 112, as well
as adding horizontal flip with the probability of 50%. The
division ratio β is set to 0.7, and the Margin represents the
difference between the mean value of high and low groups is
set to 0.15 by default. The ratio of LOP , LMMD and LOR
will be discussed in the Evaluation of Trade-Off Parameters
of section IV. Further, the influence of these three losses will
be explored in the Ablation Study of section IV. We run our
model using stochastic gradient descent (SGD) with an initial
learning rate of 0.0001, which is divided by 10 after every 20
epochs, a momentum of 0.9, and a weight decay of 0.0005.

TABLE II: Results of cross-dataset FER experiments between
RAF-DB, JAFFE, CK+ and FER2013.

Experiments DANN [27] DAN [18] state-of-the-art Ours

R→J 63.85 62.44 57.75 [9] 67.61
R→C 76.04 77.99 78.83 [9] 82.45
R→F 45.94 50.05 52.37 [9] 50.83
J→R 36.52 38.84 - 38.84
J→C 44.85 68.25 65.01 [12] 71.03
J→F 27.59 25.14 - 25.05
C→R 39.18 36.75 - 40.38
C→J 31.92 51.17 51.64 [12] 53.52
C→F 29.26 28.52 - 29.43
F→R 59.81 63.60 - 62.08
F→J 52.11 54.46 50.70 [28] 55.40
F→C 59.33 63.23 - 65.74

Average 47.20 51.70 - 53.53

IV. RESULTS AND DISCUSSION

Experimental results of the proposed SSRN are shown in
this section. We first present the results of cross-dataset FER
experiments between RAF-DB, JAFFE, CK+, and FER2013 in
subsection IV-A. Then, we discuss the Trade-Off Parameters
of three losses in subsection IV-B. After that, the influence
of each module of SSRN is investigated in subsection IV-C.
Finally, in subsection IV-D, we also apply our method to other
UDA tasks beyond FER to illustrate the strong applicability
of our method.

A. Results across RAF-DB, JAFFE, CK+, and FER2013

The results of 12 experiments across RAF-DB, JAFFE,
CK+, and FER2013 datasets in pairs are shown in this
subsection. To offer a fair comparison, we choose two well-
performing deep domain adaption methods, i.e., DANN [27],
and DAN [18] to conduct the experiments. We also compare
our method with recent state-of-the-art methods and directly
extract the results achieved by them under the same protocol
from their corresponding literature. The experimental results
of various UDA methods are presented in Table II. Several
interesting findings can be observed from the experimental
results.

Firstly, our SSRN achieved better results in 5 of 6 exper-
iments compared with three state-of-the-art methods, which
indicates that the proposed SSRN has a more powerful emo-
tional discriminative ability in dealing with cross-dataset FER
tasks.

Secondly, compared with the classical DAN and DANN
methods, our SSRN outperforms the two traditional UDA
methods in 9 out of 12 experiments and achieves the same
results as DAN in J→R task. The average recognition accuracy
of these three methods shows that SSRN is 6.33% higher
than the DANN method and 1.83% higher than the classic
DAN method, which more fairly and intuitively shows the
superior performance of our SSRN in cross-dataset tasks.
This is because, compared with traditional UDA methods,
especially DAN, our method takes outlier samples in the
source domain into consideration and proposes corresponding
modules to alleviate its impact on cross-dataset FER tasks.
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Fig. 4: The confusion matrices of baseline in the Experiment
R→J.

Finally, In R→F and F→R experiments, our SSRN fails to
achieve the best results, and the R-F experiment was 1.54%
lower than DETN [9]. We speculate that this is due to DETN
taking the serious class imbalance problem into consideration,
which is ubiquitous in RAF-DB and FER2013 datasets. In
addition, our SSRN performed poorly in experiments J→F
and J→R, due to the small sample size and almost no outlier
sample in the source domain, which hinders the performance
of our SSRN.

Confusion matrices of the baseline method (ResNet-18) and
SSRN on the cross-dataset FER experiment R→J are shown
in Fig.4 and Fig.5 respectively. It is clear to see that our SSRN
outperforms the baseline method in terms of all the facial
expressions. More specifically, compared with the baseline
method, the accuracies of Surprise and Fear achieved by SSRN
have an increase of over 13%, which demonstrates that our
SSRN can learn more discriminative features in dealing with
cross-dataset FER.

In addition, we also visualize the OPC of samples in
RAF-DB to investigate the effectiveness of our SSRN. The
experimental results reported in Fig.6 show that our SSRN
gives a lower OPC to the facial images with low quality,
huge difference in personal attributes (e.g., age and ethnic),
inconsistent annotation, and serious occlusion, while giving a
higher OPC to facial images with clarity, no objection, and no
occlusion. The experimental results indicate that the proposed
SSRN can effectively suppress outlier samples in the source
domain.

B. Evaluation of Trade-Off Parameters

We conduct the sensitivity analysis of trade-off parameters
on the F→C experiment. In the first experiment, we investigate
the impact of λ, which represents the trade-off between LOP

Fig. 5: The confusion matrices of SSRN in the Experiment
R→J.

Fig. 6: Visualization of OPC in RAF-DB learned by SSRN:
GT represents the ground truth of the corresponding samples.

and LMMD. We set γ = 0.1 and λ = [0 : 0.1 : 0.5] to conduct
different cross-dataset FER experiments. The verification accu-
racies of these models are shown in the left side of Fig.7. It can
be observed that the recognition accuracy of our SSRN varies
slightly with respect to the change of the trade-off parameter
λ. In the second experiment, we explore the impact of γ. We
set λ = 0.3 and γ = [0, 0.1, 0.3, 0.5, 0.8, 1.0] to learn different
models. The verification accuracies of these models are shown
in the right side of Fig.7. It can be observed that accuracies of
our SSRN also remain largely stable across a wide range of
the trade-off parameter γ, which demonstrated that our SSRN
is less sensitive to the choice of trade-off parameters λ and γ.

C. Ablation Study

To better demonstrate the effect of each module of SSRN,
an ablation study is conducted on C→J and F→C. Some
conclusions can be observed from experimental results shown
in Table III. First of all, compared with the baseline, which
is composed of CNN backbone ResNet-18 in SSRN, a sep-
arate Outlier Perception Module has limited improvement on
the performance of the model. This is because, without the
constraint of the OPC Revision Module, the OPC generated
by the Outlier Perception Module will become meaningless
and become closer to one in value after many rounds of
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Fig. 7: Evaluation of hyper parameter λ and γ in the Experi-
ment F→C.

TABLE III: Ablation Study in SSRN

Method C→J(%) F→C(%)

Baseline 47.42 57.66
LOP (SSRN) 47.42 59.61
LOP + LOR(SSRN) 49.77 61.28
LOP + LOR + LMMD(SSRN) 53.52 65.74

training. Secondly, adding the OPC Revision Module to the
Outlier Perception Module can improve the performance,
while the Feature Transfer Module can further enhance the
performance of the model. Finally, the biggest improvement
for one module is realized by adding the Feature Transfer
Module, which Increases by 3.75% in C→J and 4.46% in
F→C. This indicates that the Feature Transfer Module plays
the most important role in our SSRN.

D. Applicability of SSRN beyond FER

In addition to the above experiments, we are surprised
that our method still has strong applicability to other UDA
tasks. Additional experiments in other applications of domain
adaptation have been added to indicate the strong applicability
of our SSRN. Specifically, we conduct the experiments of
domain adaptation handwritten digit recognition between the
wildly used MNIST [29] and USPS [30]. To achieve this goal,
we randomly select 10000 images from both datasets, and
each category of the dataset has 1000 images to ensure the
data balance of the samples. All the images are resized to
112×112 pixels. Note that we also create the outliers for both
datasets by randomly selecting 10%, 20%, and 30% of the
sample in the source domain and then adding random noise,
performing Gaussian blur to images, and modifying labels.
ResNet-18 (Baseline) [24] and classic UDA method DAN
[18] are included in the comparison. Experimental results are
shown in Table IV. It is clear to see that the performance of
all the methods would decrease with respect to the increase
of the proportion of outliers existing in the source domain.
In addition, compared with the ResNet-18 and DAN, the
proposed SSRN can promisingly improve the recognition
accuracy in the target domain regardless of the proportion of
outliers, which indicates that our method is robust to outliers

TABLE IV: The evaluation of SSRN between USPS and
MNIST. Outliers are synthesized and their proportion is pre-
sented in the first column.

Outlier Experiment ResNet-18 [24] DAN [18] SSRN

10% U→M 75.2 83.39 92.81
M→U 95.73 96.78 98.39

20% U→M 73.1 79.13 91.37
M→U 95.36 95.43 97.65

30% U→M 72.31 73.77 89.13
M→U 94.73 94.82 97.31

in the source domain and also applicable to other UDA tasks
besides cross-dataset FER.

V. CONCLUSION

In this paper, a simple yet efficient method called SSRN has
been proposed to solve the impact of outlier samples on model
performance in cross-dataset FER tasks. With the help of the
Outlier Perception and OPC Revision Modules, we are able
to perceive the outlier level of the source data. Via providing
different OPC to different samples in the source domain, the
module can suppress the contribution of outlier samples to the
model training and highlight the samples with a low outlier
level. Furthermore, the Feature Transfer Module utilizes MK-
MMD, on the one hand, constrains the distribution distance
of high-coefficient group samples and low-coefficient group
samples in the source domain to revise outlier samples in
the source domain. On the other hand, it aligns features in
the source and target domains to obtain more robust domain
invariant features. Extensive experimental results indicate that
our SSRN method achieves a better performance than some
classic deep UDA methods and state-of-the-art cross-dataset
FER methods, which demonstrate the effectiveness of SSRN.

Finally, we would like to discuss the shortcomings existing
in our work, which are worth further investigating. First, our
work only focuses on the influence of outlier samples in the
source domain. In fact, outliers may also exist in the target
domain. It would be better to simultaneously consider the
outliers from both source and target domains in dealing with
cross-dataset FER. Subsequently, the proposed SSRN seeks
the outliers solely based on the label information of the source
samples. However, in cross-dataset FER tasks, the label infor-
mation of the target domain is not provided. Consequently, it
is urgent to investigate other outlier perception methods such
that the outliers from the target domain can be considered.
In the future, we will further focus on the outlier samples in
cross-dataset FER by considering the above two points.
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