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Abstract—Human emotion is closely related to multiple dis-
tributed brain regions, and functional connections exist between
the regions. However, how to abstract the region-level information
to improve electroencephalograph (EEG) emotion recognition
performance has not been well considered. To address this
problem, we proposed a novel Adaptive Hierarchical Graph Con-
volutional Network (AHGCN), which includes the basic channel-
level graph of EEG channels and the region-level graph of brain
regions. Different from previous methods, we propose an adaptive
pooling operation to automatically partition brain regions rather
than manually define them. To capture the intrinsic functional
connections between the brain regions or EEG channels, we
design a gated adaptive graph convolution operation. Besides,
we develop a graph unpooling operation to integrate the region-
level graph and channel-level graph to extract more discrimina-
tion features for classification. Experiments on two widely-used
datasets show that our proposed method is superior to many
state-of-the-art methods on EEG emotion recognition and could
find some interesting combinations of EEG channels.

Index Terms—EEG emotion recognition, graph convolutional
neural network (GCNN), graph pooling

I. INTRODUCTION

Emotion recognition is an important task in the emotional
brain-machine interfaces, which plays a crucial role in human-
machine interaction and health care [1]. Among various sig-
nals, electroencephalograph (EEG) signals can reflect the in-
trinsic emotion states with high temporal resolution. Therefore,
EEG signals have drawn increasing attention in analyzing
human emotion.

EEG channels are distributed on irregular grids. Traditional
deep learning frameworks like convolutional neural networks
(CNN) cannot well represent such non-Euclidean structured
data. The graph-based methods provide an effective way to
model EEG signals. Several recent works [2]–[4] employed
graph convolutional neural networks (GCNN) to model the

relations of different EEG channels, further extracting more
discriminative features for EEG emotion recognition, in which
the nodes represent EEG channels and the links mean relation-
ships between EEG channels. However, these methods ignore
the natural hierarchical structure of the brain, which not only
includes the basic micro channel-level graph but also has the
macro region-level graph with nodes representing the brain
regions. Psychological study [5], [6] have revealed that human
emotion perception draws on a distributed set of structures
that include multiple brain regions and functional connections
exist between the regions. These discoveries mean that human
emotion can be represented by the information of the emotion-
relevant brain regions and the connections between them to a
certain extent. It is hard to automatically learn such a high-
level structure from data by GCNN itself, so in order to capture
region-level information for EEG emotion recognition, there
are two critical problems to consider: i) how to detect the brain
regions that may contain different numbers of EEG channels;
ii) how to learn the intrinsic relations between the regions to
capture the region-level information for classification.

Recently, some attempts have been made on this issue. Song
et al. [4] manually aggregated the nodes into some macro
nodes by a graph coarsening operation, which is designed
according to spatial locations of EEG electrodes. Li et al.
[7] also manually divided the electrodes into some brain
regions. They first extract the features of each region and then
integrate the features of the regions to obtain global features.
However, imperceptible neuralmechanism in the brain makes
it inaccurate to define the meaningful combination of EEG
channels manually.

To address the aforementioned issues, we propose a
novel Adaptive Hierarchical Graph Convolutional Network
(AHGCN). The basic idea is to automatically aggregate EEG
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channels into brain regions for capturing region-level informa-
tion. Based on this idea, an adaptive graph pooling operation is
proposed to partition brain regions and construct the region-
level graph flexibly. Specifically, this operation is based on
a cluster assignment matrix that is adaptively generated by
fusing spatial and frequency information of each EEG sample.
To capture the intrinsic relations between the regions or the
EEG channels, a gated graph convolution operation is defined,
in which an adaptive graph connections operation and a gated
structure are designed to acquire the most emotion-relevant
functional connections and graph features, respectively. In
addition, we develop a graph unpooling operation based on
the cluster assignment matrix, which bridges the two graphs
to get more rich information. In the experiment, our AHGCN
achieves the state-of-the-art performance on two widely used
public EEG emotion datasets, i.e., SEED [8] and SEED-IV
[9].

II. RELATED WORK

This section reviews the related work from three aspects:
EEG emotion recognition, graph convolutional neural network
and hierarchical graph representation.

A. EEG Emotion Recognition

EEG emotion recognition algorithms have been evolved
from traditional machine learning algorithms to deep learning.
Traditional machine learning algorithms have been studied
for many years. Liu et al. [10] designed an adaptive support
vector machine to recognize different emotions and achieved
promising results. Li et al. [11] extended the conventional
linear regression and proposed a graph regularized sparse
linear regression (GRSLR) model to improve the performance
of EEG emotion recognition. As deep learning has achieved
excellent performance in many fields, many deep learning
methods have been applied to identify EEG emotions. Tripathi
et al. [12] employed deep neural networks (DNN) and CNN to
extract high-level information from EEG signals and achieved
higher accuracy than traditional machine learning algorithms.
Song et al. [2] used GCNN to model the intrinsic relations
among different EEG channels and then perform EEG emotion
classification. In this paper, we also model the EEG signals
based on GCNN, but we consider both EEG channels features
and brain regions features.

B. Graph Convolutional Neural Network

Graph neural network (GNN) aims to build neural networks
to deal with data in graph domains, e.g., molecular structures,
social networks, and knowledge graphs. Graph convolutional
neural network is an extension of the conventional CNN,
which is more advantageous in coping with feature extraction
of data in discrete spatial domain [13]. GCNN has two differ-
ent research directions: spatial domain methods and spectral
domain methods [14]. The spatial domain methods operate
on graph node features and neighbor aggregation to model
spatial relationships. The spectral domain methods transform
the signals into spectral domain through spectral graph theory

[15]. Due to the excellent performance of GCNNs in modeling
irregular data, such as skeleton-based action recognition [16],
[17] and recommendation system [18], many works introduced
GCNN into EEG emotion recognition. Song et al. [2] first
introduced GCNN to EEG emotion recognition and employed
a learnable adjacency matrix to characterize the relationship
between EEG channels. Zhong et al. [3] further improved
the adjacency matrix to capture both local and global inter-
channel relations. However, there are functional regions in the
brain, and the modeling of EEG channels by graph convolution
cannot capture the high-level information well.

C. Hierarchical Graph Representation

There are several recent works focusing on constructing
hierarchical graph structures to capture more information. In
skeleton-based action recognition, Thakkar et al. [19] proposed
a part-based graph convolutional network that manually di-
vides the joint graph into several body parts subgraphs. They
first extract the features of subgraphs and then propagate
information between subgraphs. In traffic forecasting, Guo
et al. [20] constructed hot traffic regions graph based on
road network graph by spectral clustering, and then extracted
features of the two graphs by graph convolution and fuse the
features for classification. In EEG emotion recognition, Song
et al. [21] fused local features extracted by CNN and global
features extracted by GCNN to obtain more discriminative
features for classification.

Our proposed model is also hierarchical structure. Specifi-
cally, considering that the generation of emotion is associated
with a distributed network consisting of multiple brain regions
[22], we design a graph pooling operation to aggregate EEG
channels into meaningful regions in the scalp and then fuse the
region-level information and the low-level relations between
EEG channels.

III. METHOD

A. Overview

The framework of the proposed AHGCN is shown in Fig. 1.
The input to our model is hand-crafted features extracted from
EEG signals. The features are first represented in the form of
graphs, i.e., the channel-level graph. To capture region-level
information, we design an adaptive graph pooling to generate
the region-level graph. After the two levels of graphs are con-
structed, they are respectively fed into a gated adaptive graph
convolution layer to fuse the information among different
graph nodes in order to obtain a better graph representation.
To further combine the features of the two graphs, a graph
unpooling operation is developed to align the features of the
two graphs and get a more discriminative graph representation
for classification. Then all node features are concatenated and
fed to a full connection layer. Finally, a softmax layer is
used to output the predicted labels. We will describe the key
components of AHGCN in detail in the sequel.
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Fig. 1: The framework of the proposed AHGCN. The region-level graph is generated from the channel-level graph through
adaptive graph pooling operation. The graph features of the channel-level graph and the region-level graph are fused to recognize
the emotion classed.

B. Hierarchical Graphs Generated by Adaptive Graph Pool-
ing

Our model contains two hierarchical graphs: channel-level
graph and region-level graph, where the region-level graph is
adaptively generated from the channel-level graph by adaptive
graph pooling.

1) Channel-level graph: A weighted directed graph can be
represented in this form: G= {V, E ,A}, in which V represents
the set of graph nodes, E represents the set of edges and
A ∈ Rn×n represents the adjacency matrix whose element
Aij > 0 characterize the relation from node vi to vj . For
EEG signals, let X ∈ Rn×d denote the EEG feature matrix,
where n is the number of EEG channels and d is the number of
frequency bands. For the construction of channel-level graph,
we regard EEG channels as graph nodes and the relationships
between EEG channels as adjacency matrix. However, Inade-
quate understanding of brain mechanisms makes it difficult
to predefine these connections. Therefore, we set A to be
the parameter that can learn the intrinsic connections between
EEG channels dynamically. We use A = Relu (B) to obtain
a non-negative adjacency matrix, where B ∈ Rn×n is a
parameter matrix.

2) Region-level graph: For constructing the macro graph
of regions from EEG channels, the ideal way is to use
functional brain regions as nodes. However, how to detect
and recognize these regions in the complex brain network is
another challenging issue. Complex neural mechanisms in the
brain make it hard to predefine these regions.

Given the channel-level graph representation, we design
an adaptive graph pooling method to aggregate the nodes
to regions. Fig. 2 shows the general process of how to
generate the region-level graph from the channel-level graph.
We first propose to generate a weighted assignment matrix
R ∈ Rn×nr , in which nr is the number of regions. Rij

represents the probability that the i-th EEG channel belongs
to the j-th brain region. R can be calculated as follows:

R = softmax
(
D−1/2AD−1/2XQ

)
, (1)

where D ∈ Rn×n denotes the diagonal matrix with entries
Dii =

∑
j A (i, j). D−1/2AD−1/2 is the normalized form

of A. D−1/2AD−1/2 is used to fuse spatial information
and Q ∈ Rd×nr is used to fuse the frequency information.
The softmax operation is applied to the rows. In the case of
comprehensive consideration of spatial and frequency domain
information, the generation of the weight assignment matrix
can be more reasonable. Moreover, the weight assignment
matrix can be adaptively changed according to the EEG sam-
ples, which can characterize the differences between different
emotions and different subjects to a certain extent. Besides, we
impose an entropy minimization constraint on each row of R,
such that the rows of R are approximately one-hot vectors, i.e.,
the original graph is divided into non-overlapped subgraphs.

Given the weighted assignment matrix, the next step is
to determine the node features and edge connections of the
region-level graph. The new node features Xr ∈ Rnr×d and
the new coarsened adjacency matrix Ar ∈ Rnr×nr of the
region-level graph can be formulated as:

Xr = norm
(
RT, 1

)
X, (2)

Ar = RTAR. (3)

In (2), L1-normalization is performed along columns of R,
and then the nodes are aggregated averagely and generate the
new macro nodes. This process is similar to average pooling.
In (3), when calculating the relations between two regions,
we comprehensively consider the connection between two
nodes in the regions and generate the region adjacency matrix
denoting the connections between the regions.
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Fig. 2: The overall process of the region-level graph generation. By fusing the spatial and frequency information of EEG
channels, the weight assignment matrix R is generated under the effect of entropy minimization. Based on R, the region-level
graph is generated from the channel-level graph.

C. Gated Adaptive Graph Convolution Layer

After the channel-level graph and region-level graph are
constructed, they are respectively fed into a gated adaptive
graph convolution layer to capture the intrinsic connections
between EEG channels and regions. Here, we use the region-
level graph as an example to illustrate this operation.

The fixed adjacency matrix Ar cannot represent the changes
of different emotions and subjects and dynamics of EEG
signals. To adaptively capture the important emotion-relevant
edges, inspired by GAT [23] and self-attention mechanism
[24], we use an adaptive mask to learn a data-dependent graph
connections Ãr ∈ Rnr×nr for each sample:

Ãr =
(
Dr

−1/2ArDr
−1/2

)
⊙M , (4)

M = sigmoid
(
XrW1(XrW2)

T
)
, (5)

where Dr ∈ Rnr×nr and Dr
−1/2ArDr

−1/2 is the nor-
malized form of Ar. ⊙ is the element-wise production.
M ∈ Rnr×nr is a weighted mask adjusted according to the
input features. W1 ∈ Rd×dm and W2 ∈ Rd×dm embed the
node features into a higher-level directed graph embedding
space and then calculate the dot product similarity between
regions to measure the importance of the edges.

According to [4], graph convolutional operation can be
repeated to model a high-level connections between nodes.
Ãr

k
, the k-order polynomial of Ãr, can express the relation-

ship between nodes after k-step graph convolution operations.
Thus, to capture different level information of the graph, the
graph convolution operation fGCN can be defined as

fGCN (Xr,Ar) =
K∑

k=0

Ãr
k
XrWk, (6)

where Wk ∈ Rd×d1 is the weight matrix. This process
provides a better way to integrate information from different
levels of the graph.

Particularly, Different EEG channels and feature dimensions
contribute differently to emotion recognition. In order to

automatically acquire most remotion-relevant graph features,
inspired by gated CNN [25], we design a gated graph con-
volution operation and the output of the region-level graph
Yr ∈ Rnr×d1 is formulated as following:

Yr = Relu

(
K∑
i=0

Ãr
i
XrWi

)

⊙ sigmoid

 K∑
j=0

Ãr
j
XrWj

 ,

(7)

where Wi ∈ Rd×d1 and Wj ∈ Rd×d1 is the learnable
parameters. Here, The first part is the graph features after
graph convolution. For the second part, we use an additional
graph convolution operation to control which outputs should
be concerned.

As for the channel-level graph, it shares the same structure
to the region-level graph, except for different input data and
learnable parameters. Here, we use Y ∈ Rn×d1 to represent
the output of the channel-level graph after graph convolution.

D. Interaction between channel-level graph and region-level
Graph by Graph Unpooling

After the gated adaptive graph convolution, we get better
graph representations, and the next step is to combine the
features of the two graphs. However, due to the adaptability
of the region-level graph, i.e., different EEG samples may
have different styles of brain regions partition, it is difficult to
align features between the channel-level graph and the region-
level graph. In graph pooling operation, we use R to generate
the region-level graph, which contains the correspondence
between EEG channels and brain regions. Here, we also can
use it to develop a graph unpooling operation. This operation
on the region-level graph can be formulated as:

Yr
′ = RYr, (8)

where Yr
′ ∈ Rn×d1 . This process allows each node in a region

to have the features of the region.
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Now the channel-level graph and the region-level graph have
the same dimension. Then we add the features of the two
graphs. The final graph output features Yall ∈ Rn×d1 can be
formulated as:

Yall = Y ⊕ Yr
′, (9)

where ⊕ is the element-wise addition. In this way, a node has
both channel-level and region-level features. Then all node
features are connected and fed to a full connection layer.
Finally, a softmax layer is used to output the predicted labels.

E. Loss Function

The loss function used in our model includes two parts:
cross entropy loss and entropy minimization loss of R. The
total loss function is formulated as follows:

L = −
C∑

c=1

yclogŷc − λ
n∑

i=1

nr∑
j=1

Rij logRij . (10)

The first term is the cross entropy loss, where C denotes
number of classes and yc ∈ {0, 1}. If the sample belongs
to the c-th class, then yc = 1, otherwise yc = 0. ŷc ∈ [0, 1]
represents the probability value predicted by our model that the
sample belongs to c-th class. The second term is the entropy
minimization loss, where λ is the coefficients for the entropy
minimization. This loss function ensures that the rows of R are
approximately one-hot vectors, i.e., each EEG channel belongs
to only one region.

IV. EXPERIMENT

A. Datasets and Protocols

SEED [8] contains EEG data recorded from 15 healthy
subjects (7 males) while they were watching 15 emotion-
eliciting video clips. The EEG signals are collected at a
sampling rate of 1000 Hz using a 62-channel electrode cap
that conforms to the international 10-20 system. The video
clips contain three types of emotions, namely positive, neutral
and negative, with five video clips for each emotion. Each
clip lasts about 4 minutes. Each subject participated in the
experiment three times at different time periods, so there are
three sessions of EEG data, and each session contains 15
trials for each subject. For comparison with previous literature,
we follow the widely employed subject-dependent protocol
in [8]. Specifically, the first nine trials of each session are
used as training data and the remaining six trials are used
as testing data. Then we calculate the average accuracy and
standard deviation of 30 sessions (two sessions per subject) as
evaluation metrics to measure our model.

SEED-IV [9] contains EEG data recorded from 15 healthy
subjects (7 males) while they were watching 24 emotion-
eliciting video clips. The EEG signals are collected at a
sampling rate of 1000 Hz using a 62-channel electrode cap that
conforms to the international 10-20 system. The video clips
contain four types of emotions, including happy, sad, fear, and
neutral, with six video clips for each emotion. Each clip lasts
about 2 minutes. Each subject participated in the experiment
three times at different time periods, so there are three sessions

of EEG data and each session contains 24 trials for each
subject. We follow the subject-dependent protocol used in [9].
Specifically, The last eight trials of each session containing all
four emotions (two trials for each emotion) are used as test
data, and the remaining 16 trials are used as training data. Then
we calculate the average accuracy and standard deviation of all
45 sessions (three sessions per subject) as evaluation metrics
to measure our model.

B. Preprocessing

For the SEED dataset, we follow the same preprocessing
methods in [8]. The EEG signals are down-sampled with
200 Hz and the component in five frequency bands (δ: 1-3
Hz, θ: 4-7 Hz, α: 8-13 Hz, β: 14-30 Hz, γ: 31-50 Hz) is
filtered. The Differential Entropy (DE) features, the input to
our model, are pre-computed by using a 256-point short-time
Fourier transform with a non-overlapped Hanning window of
1s.

For the SEED-IV dataset, we follow the same preprocessing
methods in [9]. The EEG signals are down-sampled with 128
Hz and sliced into 4-second non-overlapping segments. Then
the component in five frequency bands (δ: 1-3 Hz, θ: 4-7 Hz,
α: 8-13 Hz, β: 14-30 Hz, γ: 31-50 Hz) is filtered. Similar to
SEED, the DE features are pre-computed over five frequency
bands in each channel.

C. Implementation Details

In the experiment, the input to our model is the DE features
extracted from five frequency bands, so the number of EEG
channels (n) is 62, and the number of frequency bands (d) is 5.
For graph pooling, the original 62 EEG channels are clustered
into 10 regions for SEED and 14 regions for SEED-IV. For the
graph convolution part, the order of graph convolution (K) is
set to 2, and the transformed dimension (d1) is set to 32. As for
the coefficient λ, we fix it at 0.1 throughout the experiments.
The proposed AHGCN is implemented by Pytorch. During the
model training, we use the Adam to optimize the model with
a learning rate of 0.001 and a batch size of 32.

V. RESULT

A. Result Analysis and Comparison

To verify the validity of our model, we compare our
AHGCN with various existed algorithms on SEED and SEED-
IV, respectively, including SVM [26], GSCCA [27], DBN [8],
STRNN [28], DGCNN [2], BiDANN [29], BiHDM [30], R2G-
STNN [7], RGNN [3], IAG [4] and V-IAG [31]. All these
methods follow the same subject-dependent protocol with
our AHGCN. Table I and Table II present the classification
accuracy and standard deviation of our AHGCN and all
baselines on SEED and SEED-IV using the pre-computed DE
features.

Deep learning models outperform the traditional SVM. Our
AHGCN improves the current state-of-the-art results on both
SEED and SEED-IV. Our model achieves 96.72% on SEED
and 82.78% on SEED-IV, which verifies the superiority of
our AHGCN. Compared with other graph-based methods,
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TABLE I: The results (mean accuracy / standard deviation) on
SEED

Method
training
/testing ACC (%) STD (%)

SVM [26] 9/6 83.99 9.72
GSCCA [27] 9/6 82.96 9.95

DBN [8] 9/6 86.08 8.34
STRNN [28] 9/6 89.50 7.63
DGCNN [2] 9/6 90.40 8.49

BiDANN [29] 9/6 92.38 7.04
BiHDM [30] 9/6 93.12 6.06

R2G-STNN [7] 9/6 93.38 5.96
RGNN [3] 9/6 94.24 5.95

IAG [4] 9/6 94.89 6.16
V-IAG [31] 9/6 95.64 5.08

AHGCN (our model) 9/6 96.72 4.58

TABLE II: The results (mean accuracy / standard deviation)
on SEED-IV

Method
training
/testing ACC (%) STD (%)

SVM [26] 16/8 56.61 20.05
GSCCA [27] 16/8 69.08 16.66

DBN [8] 16/8 66.77 7.38
DGCNN [2] 16/8 69.88 16.29

BiDANN [29] 16/8 70.29 12.63
BiHDM [30] 16/8 74.35 14.09
RGNN [3] 16/8 79.37 10.54

AHGCN (our model) 16/8 82.78 11.93

i.e., DGCNN, RGNN, IAG, and V-IAG, our model achieves
better classification results. Although they are all graph-based
methods, our hierarchical graph structure can capture both
channel-level and region-level information and get better graph
representation. Also, AHGCN has an improvement in contrast
to other domain adaptive methods, including BiDANN, Bi-
HDM, and R2G-STNN, which involve test data for network
optimization. Our AHGCN does not use test data during
training but still achieves better performance. This verifies the
high generalization of our AHGCN.

Confusion matrices are presented in Fig. 3. For the SEED
database, our model can recognize better for positive and neu-
tral emotions than negative emotion. A similar phenomenon is
observed in SEED-IV. For the SEED-IV database, our model
performs better on happy and neutral emotion than sad and
fear emotion. The findings indicate that participants watching
positive or neutral movies may generate similar EEG patterns.

B. Ablation Studies

To further verify the validity of the vital component in our
model, we conduct an ablation study. The results are shown
in Table III.

Firstly, we estimate the impact of the region-level graph
branch in our model. We present the result using our AHGCN

(a)

(b)

Fig. 3: The confusion matrices of EEG recognition results
using the proposed AHGCN on the SEED and SEED-IV
databases. (a) Confusion matrix on the SEED; (b) Confusion
matrix on the SEED-IV.

TABLE III: The results (mean accuracy / standard deviation)
of ablation studies

Method SEED SEED-IV
w/o region-level graph 94.66 / 5.11 80.79 / 12.76

w/o channel-level graph 93.04 / 6.27 79.61 / 14.17
Shared learnable matrix 96.30 / 5.34 81.63 / 13.21

Fixed 16 regions pooling 95.62 / 5.30 80.76 / 13.52
Fixed 17 regions pooling 96.20 / 4.91 81.89 / 13.46

w/o adaptive structure 95.57 / 5.21 81.44 / 13.53
w/o gated structure 95.98 / 5.37 82.26 / 13.51

AHGCN 96.72 / 4.58 82.78 / 11.93
‘w/o’ denotes ‘without’

without the region-level graph. Without the region-level graph,
we can see that the classification accuracy for EEG emotion
recognition drops by about 2% on both databases, demonstrat-
ing that the region-level graph we designed can capture useful
region-level information which cannot be easily captured by
the regular graph convolution. Also, we remove the channel-
level graph branch, then the performance also drops, indicating
that channel-level information is also important for EEG
emotion recognition.

The adaptive graph pooling operation is the key part of
the region-level graph branch. To validate the efficiency of
the adaptive graph pooling operation, we compare it with
different variants. We first replace R with two different fixed
regions partition methods in [4], [7], namely, fixed 16 regions
pooling and fixed 17 regions in Table III. Specifically, they
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manually defined regions based on spatial location or cortical
regions. We also present the result of replacing R with a
learnable matrix, i.e., all samples share the same learnable
region partition. As shown in Table III, the two learnable
region partition methods perform better than the fixed partition
methods, proving that automatic partition is more reasonable,
while manual partition may introduce some errors. Moreover,
our adaptive pooling operation performs better than the learn-
able matrix, indicating that adaptive pooling can capture the
differences between different EEG samples.

The two major designs in our gated adaptive graph convo-
lution, i.e., adaptive graph connections and gated structures,
are helpful in recognizing emotions. The adaptive connections
can dynamically capture the important connections between
EEG channels or brain regions. The gated structure, generated
by a graph convolution operation, can better capture the most
emotion-relevant graph features.

C. Visualization of Region Partition

The aforementioned experiments verify the competitive
performance of our proposed AHGCN. To better illustrate
the region partition our method learned, we here visualize
some crucial regions. The degree centrality is a validated index
measuring connectivity of a node with other nodes, which has
been widely used to evaluate the importance of the nodes in
the graph [32]. We use the degree centrality in the region-level
graph to measure the importance of the regions. The degree
centrality Ci of the i-th regions can be defined by

Ci =

nr∑
n=1

Ar (i, n) +

nr∑
m=1

Ar (m, i)− 2Ar (i, i) . (11)

Fig. 4 shows the top 3 regions having the largest degree
centrality. We have the following findings:

• There is a large variation of the region partition among
subjects, where the regions have different locations and
combinations of EEG channels.

• In statistics of positions, there are some commonalities
between different subjects: EEG channels within the
crucial regions frequently appear in the frontal lobe and
temporal lobe, which means the channels in these regions
contribute significantly to emotion recognition. These
results coincide with the previous cognition observations
of biological psychology [33].

• Most of the EEG channels within each region are con-
centrated in one area of the scalp, but a few are scattered,
which indicates that the functional relationship between
EEG channels is related to, but not entirely dependent
on, the spatial distance.

VI. CONCLUSION

In this paper, we proposed a novel graph-based method
for EEG emotion recognition called AHGCN to capture the
information of both the channel-level graph and the region-
level graph. The adaptive graph pooling operation provides a
more flexible way to partition the brain regions dynamically.

Fig. 4: The regions learned in the AHGCN are visualized
by the top 3 regions having the largest degree centrality of
different subjects on SEED. Each color represents a region,
and the importance of these colors is in descending order:
blue, red, yellow.

Given the two levels of graphs, the gated adaptive graph
convolution is employed to diffuse information between graph
nodes so as to obtain a better graph representation. Besides,
integrating the features of the region-level and channel-level
graph, achieved by the graph unpooling operation, can ab-
stract richer information which is helpful for EEG emotion
recognition. Extensive experiments on SEED and SEED-IV
demonstrated the superiority of our model, and some regions
are shown for intuitive understanding, which may also be
rather meaningful from the view of human emotion cognition.
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