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Abstract Cross-database micro-expression recognition is a great chal-
lenging problem due to the short duration and low intensity of micro-
expressions from different collection conditions. In this paper, we present
a Motion Attention Deep Transfer Network (MADTN) that can focus
on the most discriminative movement regions of the face and reduce the
database bias. Specifically, we firstly combine the motion information
and facial appearance information to obtain the discriminative represen-
tation by merging the optical flow fields between three key-frames (the
onset frame, the middle frame, the offset frame)and the facial appear-
ance of the middle frame. Then, the deep network architecture extracts
cross-domain feature with the superiority of the maximum mean discrep-
ancy(MMD) loss so that the source and target domains have a similar dis-
tribution. Results on benchmark cross-database micro-expression exper-
iments demonstrate that the MADTN achieves remarkable performance
in many micro-expression transfer tasks and exceed the state-of-the-art
results, which show the robustness and superiority of our approach.

Keywords: Micro-expression recognition · Deep learning · Optical flow
· Transfer learning.

1 Introduction

Micro-expressions can reveal true information in social life, which are uncon-
scious and spontaneous facial movements during the time a person emerge emo-
tion but intentionally or involuntarily tries to hide genuine emotion [8]. There-
fore, micro-expression recognition has great value in different fields, including lie
detection [34], clinical diagnosis [35], business negotiation [36]. This has attracted
increasing researchers to analyze micro-expression. Nevertheless, compared to
ordinary facial expressions, the duration of a micro-expression is usually very
short which is between one twenty-fifth to one half of a second [7]. Moreover,
the muscle movements of micro-expressions also have locality and low intensity
characteristics [34]. So micro-expressions recognition lack discriminative feature
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(a) Positive (b) Negative (c) Surprise

Figure 1. Examples of the middle frame and the motion attention representation in
the SMIC-HS database. The first row are the middle frames of a micro-expression
sequence.The second row are RGB images that R channel is the optical flow fields
between the onset frame and the middle frame of video clip, G channel denote gray
image of the middle frame, and B channel is the optical flow fields between the middle
frame and the offset frame.

representations. The low intensity and short duration of micro-expressions make
its recognition a very difficult task for people, even with professional training
[11]. Thus, it is necessary to build an automatic micro-expression recognition
system by using machine learning and computer vision techniques.

In recent years, many researchers have proposed a series of algorithms based
on the characteristics of micro-expressions. In the work of [31], Park et al. pro-
posed using the Eulerian Motion Magnification (EMM) [38] to exaggerate sub-
tle change in the micro-expression video. Temporal interpolation method (TIM)
[43] and Sparsity-Promoting Dynamic Mode Decomposition (DMDSP) [18] was
employed to solve asymmetrical length of micro-expression video in [24], [22],
[23]. Due to local binary pattern on three orthogonal planes (LBP-TOP)[42]
could encode spatio-temporal variations, Pfister et al. chosen it to extract micro-
expression representation [33]. Subsequently, Wang et al. [37] proposed local Bi-
nary Pattern with Six Interception Points (LBP-SIP) by reducing redundant
information in LBP-TOP. Later on, lots of spatio-temporal descriptors were em-
ployed in micro-expression recognition, such as Spatio-temporal Completed Lo-
cal Quantized Patterns (STCLQP) [16], Spatio-temporal LBP with Integration
Projection (STLBP-IP) [15], Histogram of Oriented Gradient-TOP (HOG-TOP)
[24]. Optical Flow (OF) [14] can readily portray motion information displayed in
the micro-expression video. Several works were proposed based on OF, for exam-
ple, Main Directional Mean Optical Flow (MDMO) [27], Facial Dynamics Map
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(FDM) [39], Bi-Weighted Oriented Optical Flow (Bi-WOOF) [26]. Meanwhile,
with deep learning widely prevailing in the visual task, it is obstacle for micro-
expressions recognition by deep learning that lack large spontaneous micro-
expressions database. Current popular spontaneous micro-expressions datasets
are small, such as SMIC[25], CASME II[40]. Due to characteristics of micro-
expressions, it is very hard to collect many spontaneous micro-expressions sam-
ple. Some works [20,32,19] explored to utilize neural networks in micro-expression
recognition task.

Nevertheless, the above work mainly assumes that training(source) set and
test(target) set satisfy the same distribution. This assumption is hard to conform
with practical situations because samples recorded with different equipment un-
der diverse backgrounds, illumination, angle. Without taking this into account,
model trained on the source domain may fail to generalize well to the sample
in the target domain. To alleviate this problem, transfer learning leverages the
source domain with label information, and transfers the knowledge of the source
domain to the unlabeled target domain [6]. Therefore, Zong et al. firstly in-
vestigate cross-database micro-expression recognition in [44,46,45] to alleviate
distribution shift across domains.

In order to construct more discriminative and robustness features, we pro-
pose Motion Attention Deep Transfer Network (MADTN) for cross-database
micro-expression recognition in this paper. Intuitively, people perceive micro-
expressions by observing facial muscle movements in a video instead of only an
image. Inspired by the intuition, MADTN perceives facial movement and pays
attention mainly to the variational facial regions. Fig.1 illustrates the synthetic
image of optical flow fields and facial appearance information. Optical Flow
can obviously display the variational regions of the face. As can be shown in
Fig.1.(a), movements occur in the corners of the mouth and the tip of the nose.
Thus MADTN is able to focus on the discriminative regions of facial image.
Firstly, we estimate facial deformations between the middle frame and the onset
or offset frame in a micro-expression sequence. Then, the motion information is
weighted to different regions of the face by Convolution Neural Network (CNN).
Finally, we are able to reduce the feature distribution gap between domains by
inserting the MMD loss into CNN. In this paper, our main contributions are
summarized as follows:

• We propose Motion Attention Deep Transfer Network (MADTN) to conduct
cross-database micro-expression recognition. MADTN can perceive the mo-
tion regions of the face and reduce the distribution shift between source and
target domain.

• Visualized results show that the optical flow algorithm is effective in depict-
ing facial muscle movement. With the integration of optical flow fields and
facial appearance information, it can generate a discriminative feature rep-
resentation, see Fig.1. We only select three frames from the video clips to cut
down redundant information in sequence, and optical flow with them display
larger degrees of motion information that contribute to the representation
more discriminating.
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• Experiment results demonstrate the superiority and robustness of the pro-
posed MADTN over other state-of-the-art methods on two benchmark tasks.

2 RELATED WORK

Motion information can effectively improve the performance of micro-expression
recognition. Several approaches were proposed based on Optical Flow(OF), which
can readily portray motion information. MDMO [27] calculate the main direction
of OF in each region of interest (ROI), including local statistics and spatial loca-
tion information. FDM [39] extracts the motion information of micro-expression
in a different granularity that iteratively calculates the principal OF direction of
the local facial dynamic. BI-WOOF [26] was weight the Histogram of the Ori-
ented Optical Flow (HOOF) [3] by multiplying with OF magnitude and optical
strain magnitude of each ROI. These approaches utilize OF based the ROI level,
thus it is important to choose appropriate ROI. However, improper ROI which
include different motion direction may damage motion information that only con-
siders the single direction of OF in ROI. In addition, these methods only consider
motion information but neglect facial information. Combining motion informa-
tion and facial information can accurately indicate the facial region where the
movement occurs. In computer vision community, the attention mechanism[17]
is proposed to weight different ROI and highlight the representations of task-
related location. Compare with existing attention model that added attention
module in the network, our approach adopts optical flow to produce the atten-
tion maps. In this paper, we weight facial information by OF information at the
pixel level to generate more discriminative representation.

Deep learning has been shown to be effective in extracting features but is
fairly new to this community. Because the lack of micro-expression samples lim-
its the development of deep learning on micro-expression recognition. Kim et
al. [20] attempt to utilize CNN and Long Short-Term Memory (LSTM) encod-
ing micro-expression sequence and the network was designed relatively shal-
lower. Peng et al. adapt micro-expression video clips and its OF information to
train a 3D-CNN model that named Dual Temporal Scale Convolutional Neural
Network(DTSCNN) [32] Enriched Long-term Recurrent Convolutional Network
(ELRCN) [19] stack video frame, OF and optical strain with adjacent frames
based channel level and feature level. Inspired from the above idea, this paper
utilizes CNN to learning discriminative representation that combines facial im-
age and OF information. A larger pixel’s movement could contribute to more
discriminative representation, thus we calculate OF between the onset or offset
frame and the middle frame. The duration of a micro-expression video is usually
very short which less than one half of a second, so the peak of micro-expression
are more easily captured by high-speed cameras. On the one hand, OF in ad-
jacent frame is too subtle to discriminative. On the other hand, it may not be
robust enough to noise so that not accurately depict facial muscle movements.

To satisfy the practice application, cross-database micro-expression recogni-
tion is worthy to investigate that mitigate the domain shift between source data
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Figure 2. Overview of the proposed Motion Attention Deep Transfer Network
(MADTN) for unsupervised cross-domain micro-expression recognition. We select three
frames(the onset frame, the middle frame, the offset frame) from a micro-expression
sequence to produce more discriminative representation. Our method leverages the rep-
resentation by backpropagating the MMD loss between features in addition to cross
entropy loss. (a) two optical flow fields between the onset or offset frame and the middle
frame, the gray image of the middle facial frame. (b) a synthesis RGB image consist
of three gray images in (a). (c) Deep Transfer Network. The blue and orange arrows
denote the source domain and target domain, respectively.

and target data. Zong et al. [44] proposed Target Sample Re-Generator (TSRG)
to regenerate samples that have the same or similar distribution. In the work of
[45], Zong et al. attempt to bridge the feature distribution shift by proposing the
auxiliary set selection model(ASSM) and transductive transfer regression model
(TTRM). MMD can measure the feature distribution distances, thus we utilize
MMD to minimizing the distribution distance between the source domain and
target domain.

3 METHODOLOGY

In this section, we introduce our proposed Motion Attention Deep Transfer
Network(MADTN) for cross-database micro-expression recognition, which uti-
lizes CNN to learn the discriminative representation that combines motion in-
formation and facial appearance information. Due to the discrepancy between
databases, we embed MMD in the deep convolution network to learning domains-
invariant features.

3.1 Motion Attention Representation

Optical Flow could effectively encode the spatio-temporal displacement in the
micro-expression video. In this paper, we detect facial location by MTCNN [41]
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in the onset frame of a micro-expression video. In order to better preserve the
micro-expression related information, we crop face region from the onset frame
which up to the top of the forehead, down to the bottom of the chin. According
to the common facial bounding box in the onset frame, we crop a facial image
from other frames of the video so that not hamper the motion information. On
the one hand, micro-expressions have a very short duration, which makes sure
that the faces of other frames exist in the relative facial position of the onset
frames. On the other hand, if every frame was detected facial location, different
facial bounding box will result in face displacement. So optical flow does not
represent facial muscle movement, it would have a negative effect on optical flow
approximation. The optical flow estimation algorithm [9] infers the motion of
an object by tracking the displacement of mass points in a sequence. Given two
frames in a video clip, the corresponding points on them satisfy the following
equation:

I(x, y, t) = I(x+∆x, y +∆y, t+∆t) (1)

where I(x, y, t) is intensity at pixel point (x, y) in frame at time t, after ∆t time,
the piont move (∆x,∆y) that exist in another frame. According to Eq.(1), we
could define the optical flow constraint equation:

IxVx + IyVy + It = 0 (2)

where Ix, Iy, It are the partial derivatives of the intensity function. Vx and Vy
are the horizontal and vertical components of the optical flow, which are defined
as follow:

V =

[
Vx =

dx

dt
, Vy =

dy

dt

]T
(3)

Due to obviously discrepancy exists between variations of the onset to the
middle and the middle to the offset in a micro-expression sequence, we calculate
optical flow between the onset frame and the middle frame, as well as between
the middle frame and the offset frame. As can be seen in Fig. 3.(b), movement
appears in the left corner of the mouth. The last row is the RGB image in Fig. 3
by concatenating the onset-middle optical flow image, the middle frame and the
middle-offset optical flow image. We could observe the variations region of the
face with the naked eye in the image. After such processing, we can obtain more
discriminative features. As has been mentioned before, we treat a video clip as
an image so that reduces redundant information in sequence.

3.2 Deep Transfer Network

Due to the powerful feature extraction capability of Convolutional Neural Net-
work (CNN), we designed MADTN with three convolutional layers and two fully
connected layers, see Fig. 2. Max pooling operation is used to reduce dimension-
ality after every convolutional layer. And after each layer, Leaky Rectified Linear
Unit (LReLU) [29] is adopted to increase nonlinearity of model so that improve
the fitting ability of the network.
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(a)

(b)

(c)

Figure 3. Extracting motion attention representation from a video sequence sample.
From left to right, (a) are the onset frame, the middle frame, the offset frame in a video
sequence, respectively. (b) are the optical flow fields between the onset frame and the
middle frame, the gray image of the middle image, the optical flow fields between the
middle frame and the offset frame. (c) is an RGB image that synthesis from three gray
images in (b).

Directly utilizing this model trained on source domain to test samples in
target domain usually results in poor performance because of database discrep-
ancy. MMD [1] can measure the discrepancy between two domain by calculating
the distance based on probability distributions in the reproducing kernel Hilbert
space(RKHS). Therefore, we embedded MMD in the first fully connected layer
of the network so as to produce domain-invariant features. The MMD can be
defined as:

MMD [Ds, Dt,F ] := sup
f∈F

(EDs
[f(xs)]−EDt

[
f(xt)

]
) (4)

where EDs
and EDt

denote the expectations of source domain Ds and target
domain Dt, respectively. If their distribution is similar, MMD [Ds, Dt] would
close to zero. To satisfy practice calculation, MMD also is expressed as:

MMD [Ds, Dt,H] = ‖ 1

Ns

Ns∑
i=1

κ(dsi )−
1

Nt

Nt∑
i=1

κ(dti)‖H (5)
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Because RKHS is often a high-dimensional or even infinite-dimensional space,
the corresponding kernel chooses the Gaussian kernel,

κ(ds, dt) = exp(−‖d
s − dt‖2

2δ2
) (6)

According to the above assumptions, the unbiased estimator of MMD2 [Ds, Dt,H]
was proposed:

MMD2 [Ds, Dt,H] =
1

Ns(Ns − 1)

Ns∑
i 6=j

κ(dsi , d
s
j)

+
1

Nt(Nt − 1)

Nt∑
i6=j

κ(dti, d
t
j)

− 2

NsNt

Ns,Nt∑
i,j=1

κ(dsi , d
t
j)

(7)

By adding the MMD loss into the network, the total loss function of MADTN
becomes as follows:

Lall = Ls(Φ(xs), ys) + λMMD2 [Ds, Dt,H] (8)

where Ls(Φ(xs), ys) denotes cross-entropy loss function of the source domain,
and λ is hyper-parameter to trade off these two loss functions. Through joint
training the loss functions, it not only can learn discriminative representation
about micro-expression, but also can reduce the difference between the source
and the target domains. The experiment details are presented in the next section.

Table 1. Results(mean F1-score/accuracy) based on the TYPE-I experiments, which
a series of transfer tasks between three subsets of the SMIC database. For short, H =
SMIC-HS, V = SMIC-VIS, N = SMIC-NIR. The bold elements correspond to the best
results

Method H → V V → H H → N N → H V → N N → V Average

Baseline[2] 0.8002/80.28 0.5421/54.27 0.5455/53.52 0.4878/54.88 0.6186/63.38 0.6078/63.38 0.6003/61.62

IW-SVM[13] 0.8868/88.73 0.5852/58.54 0.7469/74.65 0.5427/54.27 0.6620/69.01 0.7228/73.24 0.6911/68.07

TCA[30] 0.8269/83.10 0.5477/54.88 0.5828/59.15 0.5443/57.32 0.5810/61.97 0.6598/67.61 0.6238/64.01

GFK[12] 0.8448/84.51 0.5957/59.15 0.6977/70.42 0.6197/62.80 0.7619/76.06 0.8142/81.69 0.7223/72.44

SA[10] 0.8037/80.28 0.5955/59.15 0.7465/74.65 0.5644/56.10 0.7004/71.83 0.7394/74.65 0.6917/69.44

STM[4,5] 0.8253/83.10 0.5059/51.22 0.6628/66.20 0.5351/56.10 0.6427/67.61 0.6922/70.42 0.6440/65.78

TKL[28] 0.7742/77.46 0.5738/57.32 0.7051/70.42 0.6116/62.60 0.7558/76.06 0.7579/76.06 0.6964/69.92

TSRG[44] 0.8869/88.73 0.5652/56.71 0.6484/64.79 0.5770/57.93 0.7056/70.42 0.8116/81.69 0.6991/70.05

DRFS-T[47] 0.8643/85.92 0.5767/57.32 0.7179/71.83 0.6163/61.59 0.7286/73.24 0.7732/77.46 0.7128/71.23

DRLS[47] 0.8604/85.92 0.6120/60.98 0.6599/66.20 0.5599/55.49 0.6620/69.01 0.5771/61.97 0.6552/66.60

RSTR[46] 0.8721/87.32 0.6401/64.02 0.7466/74.65 0.5765/57.32 0.7506/76.06 0.8428/84.51 0.7381/73.98

MADTN(ours) 0.8302/83.11 0.6704/66.46 0.7641/77.44 0.6252/62.21 0.8435/84.52 0.8732/87.30 0.7678/76.84
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Table 2. Results(mean F1-score/accuracy) based on the TYPE-II experiments, which
a series of transfer tasks between the CASME II database and one subsets of the
SMIC(HS, VIS, NIR) database. For short, C = CASME II, H = SMIC-HS, V = SMIC-
VIS, N = SMIC-NIR. The bold elements correspond to the best results

Method C → H H → C C → V V → C C → N N → C Average

Baseline[2] 0.3697/45.12 0.3245/48.46 0.4701/50.70 0.5367/53.08 0.5295/52.11 0.2368/23.85 0.4112/45.55

IW-SVM[13] 0.3541/41.46 0.5829/62.31 0.5778/59.15 0.5537/54.62 0.5117/50.70 0.3456/36.15 0.4876/50.73

TCA[30] 0.4637/46.34 0.4870/53.08 0.6834/69.01 0.5789/59.23 0.4992/50.70 0.3937/42.31 0.5177/53.45

GFK[12] 0.4126/46.95 0.4776/50.77 0.6361/66.20 0.6056/61.50 0.5180/53.52 0.4469/46.92 0.5161/54.31

SA[10] 0.4302/47.56 0.5447/62.31 0.5939/59.15 0.5243/51.54 0.4738/47.89 0.3592/36.92 0.4877/50.90

STM[4,5] 0.3604/43.90 0.6115/63.85 0.4015/52.11 0.2715/30.00 0.3523/42.25 0.3850/41.54 0.3982/45.61

TKL[28] 0.3829/44.51 0.4661/54.62 0.6042/60.56 0.5378/53.08 0.5392/54.93 0.4248/43.85 0.4925/51.93

TSRG[44] 0.5042/51.83 0.5171/60.77 0.5935/59.15 0.6208/63.08 0.5624/56.34 0.4105/46.15 0.5348/56.22

DRFS-T[47] 0.4524/46.95 0.5460/60.00 0.6217/63.38 0.6762/68.46 0.5369/56.34 0.4653/50.77 0.5498/57.65

DRLS[47] 0.4924/53.05 0.5267/59.23 0.5757/57.75 0.5942/60.00 0.4885/49.83 0.3838/42.37 0.5102/53.71

RSTR[46] 0.5297/54.27 0.5622/60.77 0.5882/59.15 0.7021/70.77 0.5009/50.70 0.4693/50.77 0.5587/57.74

MADTN(ours) 0.6100/62.79 0.7486/77.54 0.7056/70.41 0.7304/72.85 0.7305/73.24 0.7403/75.98 0.7109/72.14

4 EXPERIMENTS

We evaluate the proposed Motion Attention Deep Transfer Network by cross-
domain micro-expression recognition tasks on SMIC [25] , CASME II [40]. And
we keep the same experiment protocols with [46] to guarantee fair comparison.

4.1 Databases

SMIC[25] has three subsets SMIC-HS, SMIC-VIS and SMIC-NIR, which col-
lected from three distinct cameras: a high-speed camera with 100 fps, a normal
visual camera with 25 fps, a near-infrared camera with 25 fps, respectively. All
samples were divided into three categories which are Positive, Negative and Sur-
prise. SMIC-HS contains 164 samples from 16 subjects, while SMIC-VIS and
SMIC-NIR have 71 samples belonging to the last eight subjects from all sub-
jects.

CASME II[40] consists of 257 samples video sequences of 26 subjects be-
longing to seven classes: Happy, Disgust, Repression, Sad, Fear, Surprise and
Others. The frame rate of all sample videos is up to 200 fps. In cross-database
classification task, the different databases should have same labels. According
to the definition of the label in SMIC, we relabel the samples from CASME
II, Happy samples are relabeled to the Positive(32 samples), Disgust, Sad and
Fear are given the Negative(73 samples), and the Surprise(25 samples) stays
unchanged.

4.2 Implementation details

To produce discriminative representations, we synthesize a RGB image by uti-
lizing optical flow fields and appearance information. Optical flow fields have
the horizontal components Vx and the vertical components Vy which expressed
in the Cartesian coordinate system. Optical Flow indicates the direction and
intensity of frame pixel movement, so we transform the Cartesian coordinate
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V = (Vx, Vy) into the Polar coordinate V = (r, θ), where r and θ are the ampli-
tude and oriention of the optical flow, respectively. In the HSV representation
model, Hue H typically measured in degrees [0◦, 360◦], as well as Saturation S
and Value V measured on the range [0, 1]. In order to form an image, we set
the value of V to 1 and assigned r, θ to S, H, respectively. Then we convert the
image to a grayscale image, see Fig. 3.(b).

In order to avoid overfitting problems, we select the 20% frames in the middle
of a training(source) set video clip as the middle frame but the test(target) set
only selected the most middle frame in a video clip. This increases the diversity
of sample due to the different degrees of facial muscle movement. In addition,
each sample randomly rotated between the angles [−30◦, 30◦]. And our network
was designed relatively shallow. All images were resized to 112× 112 pixels be-
fore inputting to the network, as well as in [46]. We optimize our model by
Adam[21] solver with learning rate 2× 10−4. The batch size is set to 32 for each
domain. We set the MMD penalty parameter λ to equal 2 in every experiment.
Zong et. al[46] establish a benchmark cross-database micro-expression recogni-
tion(CDMER) experimental evaluation protocol, which contains two kinds of
CDMER tasks: TYPE-I, TYPE-II. TYPE-I denote experiments between three
subset of SMIC(SMIC-HS(H), SMIC-VIS(V), SMIC-NIR(N)), i.e., H → V ,
V → H, H → N , N → H, V → N , N → V . TYPE-II indicate experiments be-
tween the selected CASME II(C) and SMIC including C → H, H → C, C → V ,
V → C, C → N , N → C. Experiments are measured using mean F1-score and
Accuracy. Mean F1-Score is the F1-score of each class divided by the number
of classes without consideration of every class size, which provides a reasonable
metric in the class imbalanced data.

4.3 Results

The results on TYPE-I, TYPE-II experiments and comparisons with other meth-
ods are reported in Table 1, Table 2. To fair comparison, the results of other
methods directly reported from [46] on TYPE-I, TYPE-II. Our proposed MADTN
model has state-of-the-art overall performance than all the comparison methods
in average mean F1-score and average accuracy. Especially in the TYPE-II exper-
iment, our method is superior to the highest average mean F1-score/accuracy of
[46] by 0.1522/14.4%. Furthermore, MADTN substantially outperforms the com-
parison methods on most of the experiments, and with larger rooms of improve-
ment. In addition, some comparison methods outperform MADTN at H → V .
SMIC-HS and SMIC-VIS are very similar that samples was collected from same
environment, and the frame rate is the main difference between them. Hence
other methods can achieve a relatively good result at H → V . While motion
information in some samples of SMIC-VIS is not obvious enough, probably be-
cause of the low frame rate, see Fig.4. It may not capture the peak and valley
of micro-expression in normal-speed(24fps) camera. It make MADTN to have a
relatively poor performance. Distinct motion information is very critical to train
our approach for a remarkable performance.
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Figure 4. Samples in the SMIC-VIS database

It is worth noting that three subsets of SMIC are very similar in many re-
spects, their difference is recorded by different cameras. Nevertheless, SMIC and
CASME II are much more different due to collected by different researchers.
Hence, the TYPE-II task is more difficult than the TYPE-I. As shown in Table
1, Table 2, It can demonstrate that the result of all methods in the TYPE-II
and TYPE-III task are much lower than those in the TYPE-I task. We notice
that the performance of other method drop sharply from the TYPE-I task to
the TYPE-II task, while the result of MADTN has only a small drop. These
results demonstrate the strong robustness of our proposed method. This could
be caused by enhancing feature more discriminating and alleviating distribution
discrepancy.

4.4 Ablation Analysis

To look more deeply into our model, we conduct an extensive ablation experi-
ment to study how components of MADTN affect performance. Firstly, we eval-
uate these variant ingredients of Motion Attention Feature on C → H, C → V
experiments following the same setting. In order to keep invariable network ar-
chitecture, we set it to equal zero if an ingredient has not existed. The results are
shown in Table 3, that the Face denotes a grayscale image of the middle frame in
a video clip, the onOF represent optical flow fields between the onset frame and
the middle frame, the offOF signify optical flow fields between the middle frame
and the offset frame. We compared Face and onOF-offOF to verify benefit of mo-
tion representation. The promotions of onOF-offOF suggest that facial encoded
representation has fallen behind in reflecting micro-expression compared with
motion representation. Comparing the onOF-Face and the onOF-Face-offOF,
transformation during micro-expression vanishing may benefits the performance.
It may be because larger muscle movement occurs in the last half of the video
clip. With the help of facial and motion representations, the onOF-Face-offOF
achieves the best performance than others. This is because the optical flow en-
ables the model to attention movement-related facial regions. Facial information
can help to reduce the impact of motion bias on different faces.

Then, we validate the effectiveness of the MMD loss on an ablation exper-
iment that eliminates the effect of the MMD loss. Specifically, we demonstrate
particular cross-dataset results on C → H and C → V in terms of different
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Table 3. Experimental result(mean F1-score/accuracy) of our method with different
input features on C → H, C → V and H → N . The Face denotes facial appearance
information of the middle frame, the onOF denotes optical flow fields between the
onset frame and the middle frame, the offOF denotes optical flow fields between the
middle frame and the offset frame

Input C → H C → V H → N

Face 0.4115/42.07 0.4715/52.10 0.4673/52.10

onOF-Face 0.5598/56.69 0.6207/61.96 0.5713/57.76

onOF-offOF 0.5858/59.13 0.6520/64.79 0.7352/73.24

onOF-Face-offOF 0.6100/62.79 0.7056/70.41 0.7641/77.44

value λ, see Fig.5. We can observe that the accuracy reach the maximum at
λ = 2 and then fall off. Fig.5 display the promoting effect of the supervision of
the cross-entropy loss and the MMD loss. It demonstrates that the MMD loss
can help MADTN to alleviate the distribution shift between source and target
domains and to enhance performances of our method.

(a) C → H (b) C → V

Figure 5. Performances w.r.t λ on C → H and C → V

5 Conclusion

In this paper, Motion Attention Deep Transfer Network (MADTN) has been
presented to conduct unsupervised cross-database micro-expression recognition.
We select three frames into micro-expression sequences such that can reduce
redundant information, then combine their motion information and facial ap-
pearance information to pay more attention to facial regions that occur muscle
movement. What’s more, deep transfer network has proposed to bridge the dis-
tribution discrepancy between source and target domains which increase the
robustness of our method. Experiments on two benchmark tasks show that the
MADTN achieves remarkable performance in many transfer tasks and outper-
forms all other counterparts, demonstrating the robustness and superiority of
our approach.
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