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Abstract

Micro-Expression Recognition (MER) is challenging be-
cause the Micro-Expressions’ (ME) motion is too weak to
distinguish. This hurdle can be tackled by enhancing inten-
sity for a more accurate acquisition of movements. However,
existing magnification strategies tend to use the features of
facial images that include not only intensity clues as inten-
sity features, leading to the intensity representation deficient
of credibility. In addition, the intensity variation over time,
which is crucial for encoding movements, is also neglected.
To this end, we provide a reliable scheme to extract intensity
clues while considering their variation on the time scale. First,
we devise an Intensity Distillation (ID) loss to acquire the in-
tensity clues by contrasting the difference between frames,
given that the difference in the same video lies only in the
intensity. Then, the intensity clues are calibrated to follow
the trend of the original video. Specifically, due to the lack
of truth intensity annotation of the original video, we build
the intensity tendency by setting each intensity vacancy an
uncertain value, which guides the extracted intensity clues
to converge towards this trend rather some fixed values. A
Wilcoxon rank sum test (Wrst) method is enforced to imple-
ment the calibration. Experimental results on three public ME
databases i.e. CASME II, SAMM, and SMIC-HS validate the
superiority against state-of-the-art methods.

Introduction
Micro-expression (ME) is a spontaneous facial expression
with many applicable contexts, e.g., health diagnosis, home-
land security. Recently, an increasing number of methods
for improving Micro-Expression Recognition (MER) per-
formance have been proposed (Yan et al. 2013; Kim, Baddar,
and Ro 2016).

Among these methods, convolutional neural networks
(CNN) have been extensively applied to extract discrimina-
tive ME features. However, a ME is localized with slight
movements and lasts only a short time, which makes it
difficult to spot and recognize. To deal with this problem,
some studies propose to magnify ME intensity to make
movements more remarkable. Many MER methods adopt-
ing magnification stratgies, e.g., Eulerian motion magni-
fication (EMM), Global Lagrangian motion magnification
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(GLMM), have produced promising experimental results,
which demonstrates that increasing ME intensity contributes
a lot to boosting MER performance (Bai, Goecke, and
Herath 2021; Li, Huang, and Zhao 2018; Le Ngo et al. 2018;
Wei et al. 2022a,b).

Generally, the magnification strategies implemented in
these methods mainly include two ways, i.e, in the image
space and in the feature space. In earlier works, when per-
forming magnification, researchers borrow from a proven
magnification technique and apply it to generate magnified
images as the input for recognition (Yan et al. 2013; Kim,
Baddar, and Ro 2016). This strategy is implemented based
on the onset and apex frames between which there is some
displacement of pixels. A magnification technique produces
images by shifting the displacement with different extent,
controlled by setting different amplification factors. How-
ever, this strategy can not adjust the intensity information
specific to different ME instances. For example, in a ME
video, some movements are unrelated for recognition, such
as head shaking, eye blinking (Zhang et al. 2020), where
the technique may fail to distinguish adaptively, leading to
the produced images contaminated with large deformation.
Moreover, due to the inconsistency of facial movements on
different expressions, seeking appropriate amplification fac-
tors for different samples is also an intractable job.

To overcome this drawback, some recent studies (Liu,
Zheng, and Zong 2020; Wang et al. 2018) propose to achieve
magnification in the feature space, where the features can be
dynamically changed during the training stage, thus the in-
tensity clues are more applicable to different ME instances.
In their approaches, a feature vector, considered as a rep-
resentation of intensity, is extracted independently and con-
strainted by a loss, during the attenuation of which the net-
work achieves intensity enhancement. Although this strat-
egy attempts to magnify intensity tailored to MEs, it lacks
explicit interpretation on the features. Specifically, the fea-
tures they extracted contain not only intensity clues, but also
facial texture clues, so it is difficult to interpret whether the
performance is improved by magnifying intensity clues or
other information. On the other hand, in the original video,
the intensity changes with a certain trend over time (Liu,
Zong, and Zheng 2022; Zong et al. 2018), while the features
may be out of order under no restrictions on its tendency. In
that case, the ME movements will be hard to encode.



Based on the limitations above, in this paper, we pro-
pose a novel contrastive magnification network for micro-
expression recognition, which achieves coordination be-
tween increasing intensity as well as confining tendency.
We consider in two points of view: intensity enhancement
and tendency consistency. For intensity enhancement, we
devise an Intensity Distillation Loss, which leverages the
contrastive method to distill intensity clues by contrasting
the difference between frames, given that the difference be-
tween frames lies only in intensity. In its optimization, due
to the ME movement is so subtle that may hinder the dis-
tinction between frames, we compare different ways, i.e.,
deterministic, random and probabilistic, to sample negative
candidates, the results of which prove that probabilistic sam-
pling produces more discriminative intensity features. For
tendency consistency, we aim to calibrate the variation of
intensity, implemented by keeping the intensity clues corre-
sponding to each frame varying with the same tendency as
the original video. Specifically, we build the variation curve
as a prototype by injecting uncertainty to the original inten-
sity vacancies.The uncertainty facilitates the network to per-
ceive the overall tendency, rather than guiding it to conver-
age towards specific values. The augmented intensity clues
are then optimized to follow the tendency of the modeled
prototype, driven by a Rank Sum Test method. By direct-
ing the intensity clues numerically increase and vary con-
sistently with the original video, the network could acquire
the intensity clues dynamically during iterations, and ensure
its variation conforming to proper tendency in the training
stage. Our contributions are summarized as follows:

• We propose an Intensity Distillation loss to encode ex-
plicit intensity features, underpinned by the difference
between ME frames in a video clip.

• We achieve intensity variation consistency by enforcing
a Wilcoxon rank sum test loss, which calibrates the ex-
tracted intensity clues to optimize following the built ten-
dency.

• Extensive experiments on three public ME databases val-
idate the efficacy of the proposed method.

Related works
Magnification for Micro-Expressions
Magnification strategies are very helpful to alleviate the
hard-to-perceive problem induced by low intensity. In ear-
lier studies, researchers focus on using magnified images,
which present more intensive variation, as the network’s in-
put. Peng et al. (Peng et al. 2019) employ Eulerian magnifi-
cation method (EMM) and use magnified images for recog-
nition. Li et al. (Lei et al. 2020, 2021) apply a deep learned
magnification filter to produce less noise on magnified im-
ages. In general, this strategy only produce static images,
where the degree of magnification is impossible to adjust in
the training stage, resulting in its inadaptability to different
ME samples. Therefore, a more flexible strategy, performed
in the feature space, is proposed. Liu et al. (Liu, Zheng, and
Zong 2020) propose a deviation enhancement loss which
aims to enlarge the distance of features, where the features

are generated from different frames. Xia et al. (Xia et al.
2020) impose a loss inequality regularization to calibrate the
MicroNet, so the pattern learned in the MacroNet can be in-
volved in ME features. These works provide novel insights
in extracting adaptive intensity clues, but is less persuasive
on the features constrainted by loss. In addition, they ne-
glect the intensity variation inherent in ME videos, which
may lead to the disorder of intensity features along the time
axis. For these deficiencies, we manage to acquire explicit
intensity clues achieved by a contrastive method, and merge
intensity enhancement into confining intensity tendency.

Contrastive Learning
Throughout recent years, contrastive learning has achieved
great progress in self-supervised learning. Basically, it aims
at learning transferable representations invariant to differ-
ent data augmentations (Tian et al. 2020), implemented by
choosing a set of positive and negative samples anchored by
a sample, where the positives share majority similarity with
the anchor, and the negatives share barely. The contrastive
loss is to optimize the pairwise (dis)similarity at the feature
level. Hence, the features reserved, are actually a reflection
of the discrepancy between the positives and negatives. In-
spired by this efficacy, many methods exploit it as a feature
extractor. Tian et al (Tian et al. 2020) studied the influence
of different augmentation strategies in generating the posi-
tives homologous to the anchor. Their results demonstrated
imposing various data augmentations facilitates to keep the
task-relevant information intact. Khosla et al (Khosla et al.
2020) extend it into supervised learning to narrow the intra-
class distance and to enlarge the inter-class distance. Based
on existing works, we introduce the idea of contrastive learn-
ing into MER. Our work aims to build the contrast between
different frames to extract intensity clues. Furthermore, con-
siderating that the subtle movements may deteriorate the
contrast result, we compare three methods in sampling the
negative candidates, which shows that probabilistic manner
encourages more discriminative learning of intensity clues.

Wilcoxon Rank Sum Test
Statistically, if tests and models conform to parametric stan-
dards, i.e., they subject to a known distribution, a paramet-
ric test can be used to measure their conformity. Otherwise,
nonparametric standards are adopted. The Wilcoxon rank
sum test is a nonparametric method introduced by Wilcoxon
(Wilcoxon 1992) and further expanded by Mann and Whit-
ney (Mann and Whitney 1947), widely used to measure
whether two independent statistics come from the popula-
tions with the same distribution (Larson, Farber, and Far-
ber 2009). It is developed under the null hypothesis, i.e, two
statistics have the same distribution (Bluman 2014). When
testing the hypothesis, a significance level, also called risk
level, is predifined as the probability of rejection. For two
observations, the test computes the p-value to verify if the
hypothesis can be accepted, based on the sum of their ranks.
The hypothesis is accepted if and only if the obtained p-
value is larger than the chosen significance level. In our ap-
proach, we adopted this test to calibrate the extracted inten-
sity clues to conform to the variation of the built prototype.



Figure 1: The framework contains two branches, where the lower is used to extract facial texture features, and the upper is for
the magnification of intensity clues. We get the intensity enhanced features by conducting the element-wise product of facial
texture features and intensity clues. Then, a LSTM layer deals with the enhanced features into a feature v to represent the entire
ME video clip for classification. ‘P’ denotes the positive and ‘N’ denotes the negative. “squeeze” means mapping each feature
vector into a single value and “extend” means mapping the single value to a vector again.

Figure 2: The intensity clues encoder (ICE).

Proposed Method
In this section, we will detail our method. The overall frame-
work, presented in Fig. 1, consists of two branches, where
the upper branch is the intensity magnification part which we
will introduce elaborately. Our magnification strategy comes
from two perspectives: first extract the intensity clues, and
then ensure the consistency of variation tendency.

Intensity Enhancement
Extracting Intensity Clues We manage to extract the in-
tensity clues through the intensity clues encoder (ICE), de-
tailed in Fig. 2, which is based on the intensity discrepancy
between ME frames. Consider in the same video clip, the
only difference rests merely with the intensity clues pre-
sented by facial muscle movements, so we extract useful in-
tensity information by seizing the difference.

Contrastive learning is a widely explored method serving
as a feature extractor. It implements by modeling the differ-
ence between the positives and the negatives, then the differ-
ence clues are kept as the feature. Meanwhile, the features
shared by the positives are discarded. Inspired by this, we

propose to build the intensity as the difference, so the fea-
tures learned are intensity clues. Specifically, we first unify
the length of the videos into N = 16 where frames are de-
noted by x(n), n = 1, ..., N . For a single frame x(n) in a
video, it’s extended into two views x̃

(n)
1 and x̃

(n)
2 . These

two views share the same intensity clues and differs in other
clues like color, which are used as the positives. The nega-
tives, denoted as x(−)

1n , ...,x
(−)
mn , ...,x

(−)
Mn, are supposed to be

different in intensity, so they are chosen from the remaining
frames apart from the current anchor x(n).

Considerating the motion variation is weak in the origi-
nal video, as we expect to achieve better contrast result, we
need to encourage intra-video separability. Here we compare
three sampling patterns for the negatives, i.e., determinis-
tic, random, probabilistic. The former two are extensively
adopted in contrastive learning and the last is proposed spe-
cific to the subtle movement problem in our case.

Deterministic sampling is to choose all the remaining
frames in the video. That is, for the current anchor frame
x(n), the other M = 15 frames except it are negatives, as
shown in Fig. 3(a).

Random sampling is implemented by sampling M = 15
times randomly in the left frames. Each frame has the chance
of 1

M to be chosen, as shown in Fig. 3(b).
Probabilistic sampling (Fig. 3(c)) is to sample the neg-

atives based on their similarity with the anchor. That is, for
the anchor x(n) to be extended, the candidates sharing larger
similarity with it are our priority. The sampling number is
also 15.

To be specific, for an anchor x(n), we compute its simi-
larity with the remaining frames in the same video, achieved
in a latent space. Then, a Softmax function maps their simi-
larities with the anchor into different probabilities, based on
which the negatives are sampled. In this way, the candidates
sharing larger similarity with the anchor have larger proba-
bility to be chosen. This criterion requires stronger condition
to classify z(n), and produces a more rigorous boundary for



(a)

(b)

(c)

Figure 3: Three ways on sampling the negatives. z(−)
mn de-

notes the feature of a negative candidate.

the positives and negatives, encouraging more discrimina-
tive learning of intensity features.

Once the positives and negatives are chosen, we use
the ICE block to extract their features, where z̃

(n)
1 , z̃(n)

2

corresponds to x̃
(n)
1 , x̃(n)

2 , and z
(−)
mn corresponds to x

(−)
mn

(m = 1, ...,M ), respectively. An intensity distillation loss,
aimming to distinguish the positives from the negatives, is
enforced based on the features, formulated as

LID =
−1

N

N∑
n=1

[
log

sim(z̃
(n)
1 , z̃

(n)
2 )

sim(z̃
(n)
1 , z̃

(n)
2 ) +

∑M
m=1 sim(z̃

(n)
1 , z

(−)
mn )

+ log
sim(z̃

(n)
1 , z̃

(n)
2 )

sim(z̃
(n)
1 , z̃

(n)
2 ) +

∑M
m=1 sim(z̃

(n)
2 , z

(−)
mn )

]
,

(1)

where sim(a, b) = exp(a · b/τ). τ is a pre-defined tempera-
ture hyper-parameter, and n is the index of frame in a video.

Tendency Consistency
The video clips in ME databases present with continuous
variation of expressions, where intensity is minimal at the
onset frame and reaches the peak at the apex frame, then
starts to decline until the offset frame. It have been widely
validated (Bai, Goecke, and Herath 2021) that employing its
variation tendency is helpful for recognizing MEs. There-
fore, we need to calibrate the extracted intensity clues to
be arranged according to a certain tendency, where the ten-
dency is built from the intensity variation of original video
clip.

However, when calibrating the intensity clues, the net-
work tends to converge them into specific values. This is
contradictory to the limited condition that the truth inten-
sity values in a ME video clip are not available. Thus, when
building the variation, we focus on leading the network to
perceive the overall intensity variation, rather than com-
pelling the clues to converge into specific values. This is
achieved by placing each intensity vacancy a Gaussian dis-
tribution, insteading of endowing a fixed value, as shown in
Fig. 4(a).

Build the Intensity Tendency Prototype Specifically, we
stipulate the intensity varies in the range [ϵ, 1] where ϵ > 0,

(a) (b)
Figure 4: (a) is the intensity tendency in the original video.
(b) is the calibration of the extracted intensity clues. Blue
dots denote intensity vacancies in the original video. Red tri-
angules denote the intensity clues without calibration. Green
stars denote the intensity clues after calibration.

and devide the whole video into two segments with the apex
as the boundary. The apex has the peak intensity with 1
as the mean, and the onset along with offset has the mini-
mum intensity with ϵ as the mean. For simplicity, we flag
the segment from the onset to the apex as On-A segment,
and that from the apex to the offset as A-Off segment. The
number of frames of the On-A segment (except the apex) is
N1, and that of the A-Off segment (except the apex) is N2.
N1 +N2 + 1 = N . To ensure the intensity sampled in both
segments can take on a monotonic form, we adopt the 3σ
principle, where the majority of sampled points fall in the
range of [µ − 3σ, µ + 3σ]. Taking On-A segment as an ex-
ample, in one side of the range, we have the gap between
frames computed as 3σ = 1−ϵ

N1
. Therefore, the variance is

set as σ = 1−ϵ
3N1

, so the distribution is given as below:

IOn−A ∼ N (ϵ+ (n− 1)
1− ϵ

N1
,
1− ϵ

3N1
· ηn). (2)

As the same way, we compute the intensity of frames in A-
Off segments subjecting to:

IA−Off ∼ N (1− (n−N1 − 1)
1− ϵ

N2
,
1− ϵ

3N2
· ηn). (3)

The intensity of the apex subjects to:

IA ∼ N (1,min(
1− ϵ

3N1
,
1− ϵ

3N2
) · ηn), (4)

where 0 < ηn < 1 is a learnable variable to refrain outliners.
Each specific intensity value qn of frame x(n) is sampled
from its Gaussian distribution. Next, we use the modeled
tendency as the prototype to guide the extracted intensity
clues to optimize towards it.

Calibrate the Intensity Clues The ICE block outputs the
intensity features corresponding to frames, then the network
deals with them into single intensity values, as shown in
Fig. 1. Based on the modeled prototype of the intensity
curve, we next calibrate the extracted intensity features to
vary following the curve, achieved by a Wilcoxon rank sum
test method. We adopt this test because our testing sam-
ples have small size (N = 16), and in the two statistics,
i.e., modeled prototype and extracted intensity clues, the
ranks among values matters more than their numerical sig-
nificance. Following the custom of Rank Sum Test, we set



the null hypothesis as that the two sequences share the same
distribution, and the significance level is α = 0.05.

Let S1 = (q1, ..., qN ), S2 = (k1, ..., kN ) be the intensity
values from the modeled prototype and the network respec-
tively. qn is a value sampled from each Gaussian distribu-
tion, kn is a value mapped by a linear layer from the inten-
sity feature corresponding to z(n) (see Fig. 1). Rank q and k
together and compute the rank of each value:

rqn = rank of qn among (q1, ..., qN , k1, ..., kN ), (5)

rkn = rank of kn among (q1, ..., qN , k1, ..., kN ). (6)

The rank sum over S1 is calculated by summing over rqn,
denoted as T1 =

∑N
n=1 r

q
n. Similarly, the rank sum over

S2 is T2 =
∑N

n=1 r
k
n. Since N > 10, the whole rank sum

T is close to subjecting to a Gaussian distribution as below
(Larson, Farber, and Farber 2009):

T ∼N (µT , σT )

=N (
N(2N + 1)

2
,

√
N2(2N + 1)

12
).

(7)

The test statistic is computed by the generalized difference
test Equation Z = T2−µT

σT
. Then the Z is used to compute

the probability on the standard normal distribution,

p =
1√
2π

e−
Z2

2 . (8)

The p-value decides whether the two samples fit hypothesis.
If p > α, S1 and S2 accept the hypothesis so S2 conforms
to the tendency of S1, otherwise it doesn’t. Here we devise a
Wilcoxon rank sum test loss to penalize the samples which
fail to follow the built prototype with a margin:

LWrst = max(0, ξ − (p− α)), (9)

where ξ is a margin which can be a fixed hyper-parameter or
a learnable variable.

Contrastive Magnification Network
As shown in Fig. 1, after the intensity clues are calibrated,
they are conducted the element-wise product with the facial
texture features outputted from the facial feature encoder
(FFE). Here we obtain the facial features with enhanced in-
tensity clues. For these features, a LSTM is used to capture
the dependencies in the sequence and aggregates them into
a vector v, which is the final representation of a ME video
clip used for recognition. Our optimization target is

L = λ1LID + λ2LWrst + λ3LC , (10)

with LC = −
∑C

c=1 yc log(pc) and λ1+λ2+λ3 = 1, where
C is the number of classes. λ1, λ2 and λ3 are the hyper-
parameters for weighting three losses respectively.

Experiments
Datasets and Preprocessing
Datasets We conducted experiments on three public spon-
taneous ME datasets : SMIC-HS (Li et al. 2013), CASME II
(Yan et al. 2014), SAMM (Davison et al. 2016).

SMIC-HS consists of 164 ME video clips from 16 par-
ticipants captured at 100 fps. We use all the samples in this
subset with three categories : positive (51), negative (70) and
surprise (43).

CASME II comprises of 246 samples out of 26 partici-
pants. For a fair comparison with state-of-the-art methods,
we used five categories in these samples, including disgust
(63), happiness (32), repression (27), surprise (25) and oth-
ers (99).

SAMM contains 159 ME samples from 32 subjects. Like-
wise, we choose five categories from this dataset, which are
anger (57), contempt (12), happiness (26), surprise (15) and
others (26).

Preprocessing We use the tool proposed by (Bulat and Tz-
imiropoulos 2017) to locate the landmarks on the face, based
on which the face area is cropped. Then we resize all the im-
ages into 224× 224. For each ME video, we unify its length
into N = 16 by extracing frames at regular intervals, where
the interval is computed by N/N0 with N0 as the length of
the original video clip. For the videos with number of frames
less than 16, we use temporal interpolation (Bao et al. 2019)
to uniform their length.

Experimental Details
Metrics and Protocals We utilize the Leave-One-Subject-
Out (LOSO) cross-validation as the protocal to evaluate
the performance of the proposed method. Specifically, for
each database, there are totally W folds (W is the num-
ber of subjects) experiments. In each fold, the testing set
collects the samples from one particular subject while the
training set collects the samples from the remaining sub-
jects. The performance is obtained by averaging over the
performance on all folds. Two metrics, i.e., accuracy and
F1-score, are adopted for evaluation. The accuracy is the ra-
tio between the number of correct predictions B and that
of testing samples D: acc = B

D × 100%. The F1-score is
to assess the performance towards unbalanced classes, de-
noted as F1-score = 2·P ·R

P+R , with P = 1
C

∑C
c=1

TPc

TPc+FPc

and R = 1
C

∑C
c=1

TPc

TPc+FNc
, where P is the precision, R is

the recall, and TPc, FPc, FNc denote the true positive, false
positive and false negative for the c-th class, respectively.

Parameter Settings We utilize SGD optimizer with
momentum = 0.9 and weight decay = 1 × 10−4. The
learning rate is set to 0.001 and reduces by half every 50
epochs. The data augmentation strategy used for augment-
ing anchor samples are ColorJitter, RandomGrayscale and
GaussianBlur. To keep the three losses on the same scale,
we set λ1 = 0.07, λ2 = 0.71, λ3 = 0.22 respectively. These
parameters are chosen by implementing a grid search on the
CASME II dataset, where the set of parameters with the
highest performance are fixed and used when conducting on



Table 1: Comparison with other MER methods under the LOSO protocol in terms of Acc(%) and F1-score(%).

Methods CASME II SAMM SMIC-HS
Acc F1-score Acc F1-score Acc F1-score

EVM-MER (Le Ngo et al. 2016) 51.00 47.00 N/A N/A N/A N/A
RCNN (Xia et al. 2018) 65.80 N/A N/A N/A 65.80 N/A
TSCNN (Song et al. 2019) 74.05 73.27 71.76 69.42 72.74 72.36
ME-Booster (Peng et al. 2019) 70.85 N/A N/A N/A 68.90 N/A
STRCN-G (Xia et al. 2019) 80.30 74.70 78.60 74.10 72.30 69.50
MTMNet (Xia et al. 2020) 75.60 71.10 74.10 73.60 76.80 74.40
Graph-tcn (Lei et al. 2020) 73.98 72.46 75.00 69.85 N/A N/A
KFC-MER (Su et al. 2021) 72.76 73.75 63.24 57.09 65.85 66.38
AU-GCN (Lei et al. 2021) 74.27 70.47 74.26 70.45 N/A N/A

ours 78.05 73.99 78.68 77.19 79.27 80.11

the other two datasets. The minimum mean ϵ is set as 0.2,
and the margin in LWrst is a fixed parameter with ξ = 0.01.

Experimental Results and Analysis
Experimental Results To validate the efficacy of our
method, Table 1 reports its experimental results together
with that of the state-of-the-art approaches, mainly including
those applying magnification techniques for MER. To give
more comprehensive demonstration of our work’s efficacy,
we add some deep learning-based methods for comparison.

From the tables above, we can observe that our ap-
proach outperforms most MER methods with magnifying
ME movements, e.g. EVM-MER (Le Ngo et al. 2016), ME-
Booster (Peng et al. 2019), Graph-tcn (Lei et al. 2020), AU-
GCN (Lei et al. 2021), STRCN-G (Xia et al. 2019), and
yields comparative results as against those deep learning
MER methods in terms of Acc and F1-score, indicating that
the proposed method performs well not only in recognizing
MEs correctly, but also in handling unbalanced classes.

Comparison with Magnification in the Image Space On
the CASME II, our approach gets obvious improvement
compared with most prior works adopting hand-designed
filters for ME magnification like EVM-MER, ME-Booster
and RCNN. Graph-tcn and AU-GCN adopt a more advanced
magnification strategy, demonstrated to have less ringing ar-
tifacts and better anti-noise property, to magnify ME images.
We improve their accuracy by 4.07%, 3.78%, and improve
their F1-score by 1.53%, 3.52, respectively. On the SAMM,
our model also exceeds Graph-tcn and AU-GCN by a large
margin in terms of accuracy and F1-score.

STRCN-G obtains superior performance than ours with
2.25% higher accuarcy and 0.71% higher F1-score on the
CASME II. It is a deep model mainly including recurrent
convolutional layers to encode facial appearance and ME
movements spatiotemporally. To simulate the intensity vari-
ation, it uses Eulerian Video Magnification (EVM) to mag-
nify frames anchored by the onset in a video, and the mag-
nified frames are rearranged into a new sequence, based on
which the temporal connectivity is encoded. This method
considers the intensity tendency in encoding temporal clues,
but acts magnification a bit casually. When magnifying ME

intensity, it set an unified amplification factor for all im-
ages, so the images may present different results given that
their original intensity can be strong or weak. For images
with strong intensity, the magnified result may be contain-
minated with large deformation on the face, which may de-
grade the effect of recognition. Differently, our method also
considers the temporal clues by calibrating intensity ten-
dency, but manage to adjust the magnification degree adap-
tively through extracting intensity clues corresponding to
frames. Thus, we get more improvement on the SAMM and
SMIC-HS.

Comparison with Magnification in the Feature Space
On the SAMM, SMIC-HS, we also improve the accuracy
and F1-score by a large margin compared with most deep
learning methods for MER, e.g. TSCNN (Song et al. 2019),
RCNN (Xia et al. 2018).

Worth mentioning is the MTMNet, which obtaines much
closer results with us. It provides a more roundabout idea,
i.e, leveraging the macro-expression as a guidance to learn
expression-related features, inspired by the fact that macro-
expressions are presented with more intense movements
than micro-expressions. In its network, a loss inequality reg-
ularization is imposed to calibrate the MicroNet. In this way,
the pattern learned in the MacroNet can be helpful in learn-
ing ME features. However, this scheme neglects the features
specific to MEs. Micro-expressions may hold some features
distinct from macro-expressions considering the way it is
generated, so referring simply to macro-expressions is inad-
equate to obtain ME-targeted representation. The intensity
clues, extracted from macro-expressions to guide the train-
ing of the micro-expressions, is also ambiguous and not be-
longs to micro-expressions. While in our work, we obtain
explicit representation of intensity by extracing the differ-
ence between frames, which is more credible.

Ablation Study
Sampling the Negatives in Intensity Distillation We
compare the three sampling methods, i.e., deterministic, ran-
dom, probabilistic, and compute their accuracy and F1-score
on three datasets. Results are shown in Table 2. Moreover,
we retrieve the intensity values of the built prototype and



that of the features under three methods.
From Table 2 and Fig. 5 (a), we can observe that the prob-

abilistic manner demonstrates improvements than the other
two, but with limited degree, and the other two sampling
methods show no significant difference under this evalua-
tion. In Fig. 5 (a), it can be found that all three ways perform
well in following the prototype, but as for the values of in-
tensity compared with the prototype, no large increment is
shown. We suppose this is because of the inherent subtle in-
tensity variation of the video, leading to subtle fluctuation of
the similarity between negative candidates and anchor in the
latent space. Therefore, the negatives sampled in probabilis-
tic way may not change a lot compared with that in the other
two ways.

Table 2: The Acc(%) and F1-score (%) of different sampling
methods for the negatives implemented on three datasets.

Sampling CASME II SAMM SMIC-HS
Acc F1-score Acc F1-score Acc F1-score

Deterministic 74.80 70.30 75.74 73.94 78.05 78.35
Random 75.61 71.01 76.47 74.41 76.22 76.61
Probabilistic 78.05 73.99 78.68 77.19 79.27 80.11

Table 3: The Acc(%) and F1-score (%) of different losses
implemented on three datasets.

CASME II SAMM SMIC-HS
Acc F1-score Acc F1-score Acc F1-score

LC 63.82 56.77 62.50 58.79 65.85 65.89
LC+LWrst 65.45 60.37 63.97 60.22 65.85 66.05
LC+LID 73.58 68.84 71.32 68.29 74.39 75.20
LC+LID+LWrst 78.05 73.99 78.68 77.19 79.27 80.11

Efficacy of LWrst and LID We explore the impact of the
intensity enhancement as well as tendency consistency sepa-
rately. Concretely, we set the weight coefficient correspond-
ing to a loss to 0, and devote to explore the best performance
using the other, during which the classifier along with its
weight coefficient is retained. Experiment with merely the
LC is the baseline.

From Table 3, we can observe the performance deteri-
orates when the LWrst is removed, but not as much as
when we remove the LID. When we remove the both, the
framework will degrade to a simple Resnet(·) for obtaining
spatial clues and a LSTM(·) for obtaining temporal clues,
and it performs worst. Enforcing LWrst alone yields little
improvement. This is straightforward to interpret since the
LWrst serves to calibrate the intensity clues extracted by
LID, so it fails to work when there’s no intensity clues. On
the other hand, the LID, serving as the intensity extractor, is
more helpful to boost the performance, even if the LWrst is
absent. We speculate that the network can learn something
on how to use the extracted intensity clues without the guid-
ance from LWrst, but may perform worse than it is under
explict guidance to vary towards the trend of the original
video. This also suggests that enhancing intensity is crucial
for recognizing MEs correctly.

(a) (b)
Figure 5: (a) is an example for comparison among three sam-
pling methods. (b) is an example to demonstrate the efficacy
of tendency calibration.

Efficacy of Tendency Calibration To show more instinc-
tive effect of the proposed method, we plot the intensity ten-
dency of the prototype, and that of the intensity clues before
and after calibration, as shown in Fig. 5(b).

Before calibration, the intensity values fluctuate with
large scope, so there is no obvious tendency presented. After
calibration, those values are adjusted to follow the trend of
the built prototype, and their magnitude are also changed.
We can also find the intensity values after tendency cali-
bration are not much larger than that in the prototype. The
reason of this lies in the LWrst, during the optimization
of which the intensity clues are encouraged to be allocated
into the same distribution with the prototype’s intensity val-
ues. Therefore, on the whole, the intensity values are much
larger, but won’t deviate from the prototype values by a
large margin. Note that this situation has no influence on the
recognition, since the prototype’s intensity values are hypo-
thetic and do not represent the truth intensity. As we men-
tioned before, the purpose of this prototype is to guide the
network to learn the overall tendency, where the values are
insignificant. Thus, as long as the extracted intensity clues
follow its tendency, the network can be considered to fulfill
tendency consistency along the time axis.

Conclusion

In this paper, we provide a new insight towards emphasiz-
ing micro-expression’s (ME) intensity. Our strategy comes
from two perspectives: intensity enhancement and tendency
consistency. We manage to extract explicit intensity repre-
sentation by leveraging the difference between frames. We
achieve the intensity variation consistency with the original
video clip. Experimental results conducted on three public
ME databases validate the efficacy of the proposed magnifi-
cation strategy.
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