

Seeking Salient Facial Regions for Cross-Database Micro-Expression Recognition

Xingxun Jiang, Yuan Zong*, Wenming Zheng*, Jiateng Liu, Mengting Wei

Southeast University, Nanjing, China {jiangxingxun, xhzongyuan, wenming_zheng, Jiateng_Liu, weimengting}@seu.edu.cn

1. Introduction

■ We investigate Cross-Database Micro-Expression Recognition (CDMER), in which the labeled training and unlabeled testing samples belong to different micro-expression databases.

Cross-Database Micro-Expression Recognition (CDMER) faces two obstacles: 1) The severe feature distribution gap between the training and test databases, 2) The feature representation bottleneck of micro-expression such local and subtle facial expression, which requires professional knowledge.

To cope with this challenging problem, we propose a new Transfer Group Sparse Regression (TGSR) method based on facial region selection.

2. Proposed Method – Basic Idea

This paper adopts the facial region selection method to seek the salient regions from the whole face to

promote a more precise measurement of the difference between the source and target databases by the operations in the feature level to alleviate this difference better,

■ improve the extracted hand-crafted feature to become more effective and explicable for better CDMER.

3. Proposed Method – Detail (Transfer Group Sparse Regression Method, TGSR)

Feature extraction

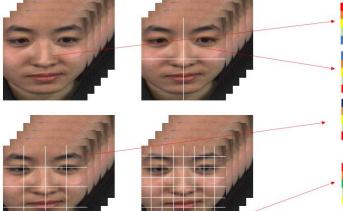
- 1. A face is split into *K* local sequence (block);
- 2. Each spatial block: d dim feature x_k ;
- 3. Each micro-expression: $\boldsymbol{x}^{\nu} = [\boldsymbol{x}_{1}^{\mathrm{T}}, \cdots, \boldsymbol{x}_{K}^{\mathrm{T}}]^{\mathrm{T}} \in \mathbb{R}^{Kd}$;

4. Source database (N_s samples)

- i-th facial block's feature is denoted by $X_i^s \in \mathbb{R}^{d \times N_s}$;
- Database's feature is denoted by $\mathbf{X}^{s} = \left[\mathbf{X}_{1}^{s^{\mathrm{T}}}, \cdots, \mathbf{X}_{K}^{s^{\mathrm{T}}}\right]^{\mathrm{T}} \in \mathbb{R}^{Kd \times N_{s}};$
- j-th sample's label is denoted by one-hot vector $\boldsymbol{l}_{i}^{s} = \begin{bmatrix} l_{i,1}^{s}, \cdots, l_{i,C}^{s} \end{bmatrix}^{T}$ which only $l_{i,C}^{s}$ equals to 1, indicating that sample belong to this category;

• The label is denoted by
$$L^s = [l_1^s, \dots, l_{N_s}^s] \in \mathbb{R}^{C \times N_s}$$
, *C* is class number.

- 5. Target database (N_t samples)
 - i-th facial block's feature is denoted by $X_i^t \in \mathbb{R}^{d \times N_t}$;



Objective Function

$$\min_{\boldsymbol{C}_{i}} \left\| \boldsymbol{L}^{s} - \sum_{i=1}^{K} \boldsymbol{C}_{i}^{\mathrm{T}} \boldsymbol{X}_{i}^{s} \right\|_{F}^{2} + \xi \left\| \frac{1}{N_{s}} \sum_{i=1}^{K} \boldsymbol{C}_{i}^{\mathrm{T}} \boldsymbol{X}_{i}^{s} \mathbf{1}_{s} - \frac{1}{N_{t}} \sum_{i=1}^{K} \boldsymbol{C}_{i}^{\mathrm{T}} \boldsymbol{X}_{i}^{t} \mathbf{1}_{t} \right\|_{F}^{2} + \lambda \sum_{i=1}^{K} \left\| \boldsymbol{C}_{i} \right\|_{F}$$
(1)

The problem can be rewritten into

$$\min_{\boldsymbol{C}_{i}} \left\| \tilde{\boldsymbol{L}} - \sum_{i=1}^{K} \boldsymbol{C}_{i}^{\mathrm{T}} \tilde{\boldsymbol{X}}_{i} \right\|_{F}^{2} + \lambda \sum_{i=1}^{K} \|\boldsymbol{C}_{i}\|_{F'}$$
(2)
where $\tilde{\boldsymbol{L}} = [\boldsymbol{L}^{s}, \boldsymbol{0}], \tilde{\boldsymbol{X}}_{i} = \left[\boldsymbol{X}_{i}^{s}, \sqrt{\xi} \left(\frac{1}{N_{s}} \boldsymbol{X}_{i}^{s} \boldsymbol{1}_{s} - \frac{1}{N_{t}} \boldsymbol{X}_{i}^{t} \boldsymbol{1}_{t} \right) \right].$

Then we introduce a new variable, $\boldsymbol{D} = [\boldsymbol{D}_1^T, \cdots, \boldsymbol{D}_K^T]^T$, which equals $\boldsymbol{C} = [\boldsymbol{C}_{i}^{\mathrm{T}}, \cdots, \boldsymbol{C}_{K}^{\mathrm{T}}]^{\mathrm{T}}$, thus the optimization of Equ. (2) can be converted in to Equ. (3)

- Database's feature is denoted by $X^t = \left[X_1^{t^T}, \cdots, X_K^{t^T}\right]^T \in \mathbb{R}^{Kd \times N_t}$.

Solved Solution

Algorithm 1: The algorithm to solve the optimal regression matrix *C* in TGSR model. **Input:** $\tilde{L}, \tilde{X} = [\tilde{X}_1^T, \dots, \tilde{X}_K^T]^T$, salient region number κ , scalar parameter ρ and μ_{\max} . •Initializing the regression matrix $\boldsymbol{C} = [\boldsymbol{C}_1^T, \cdots, \boldsymbol{C}_K^T]^T$, the Lagrangian multiplier matrix $\boldsymbol{P} = [\boldsymbol{P}_1^{\mathrm{T}}, \cdots, \boldsymbol{P}_K^{\mathrm{T}}]^{\mathrm{T}}$, and trade-off coefficient μ . Repeating step 1) to 4) until convergence. (1) Fix C, P, μ and update $D: D = (\mu I_{Kd} + 2\tilde{X}\tilde{X}^{T})^{-1}(2\tilde{X}\tilde{L}^{T} + P + \mu C)$ (2) Fix **D**, **P**, μ and update **C** : Calculate $d_i = \left\| \mathbf{D}_i - \frac{\mathbf{P}_i}{\mu} \right\|_F$, and sort the value of d_i , such that $d_{i_1} \ge d_{i_2} \ge \cdots \ge d_{i_K}$, Let $\lambda = \mu d_{i_{K+1}}$, then update *C* according to $\boldsymbol{C}_{i} = \begin{cases} \frac{d_{i} - \frac{\lambda}{\mu}}{d_{i}} \left(\boldsymbol{D}_{i} - \frac{\boldsymbol{P}_{i}}{\mu} \right), & \frac{\lambda}{\mu} < d_{i} \\ \mathbf{0}, & \frac{\lambda}{\mu} \ge d_{i} \end{cases}$ (3) Update **P** and μ : **P** = **P** + μ (**D** - **C**), μ = min($\rho\mu$, μ_{max}). (4) Check the convergence of $|| C - D ||_{\infty} < \varepsilon$. **Output:** The solved \hat{C} of regression matrix C.

$\Gamma(\boldsymbol{C}_{i},\boldsymbol{D}_{i},\boldsymbol{P}_{i},\mu) = \left\| \tilde{\boldsymbol{L}} - \sum_{i=1}^{K} \boldsymbol{D}_{i}^{\mathrm{T}} \tilde{\boldsymbol{X}}_{i} \right\|_{F}^{2} + \lambda \sum_{i=1}^{K} \|\boldsymbol{C}_{i}\|_{F}^{2} + \lambda \sum_{i=1}^{K} \|\boldsymbol{C}$ $\sum_{i=1}^{K} \operatorname{tr} \left[\boldsymbol{P}_{i}^{\mathrm{T}} (\boldsymbol{C}_{i} - \boldsymbol{D}_{i}) \right] + \frac{\mu}{2} \sum_{i=1}^{K} \| \boldsymbol{C}_{i} - \boldsymbol{D}_{i} \|_{F}^{2},$

Application

2

4

3

We first extract the feature $x_i^{te} \in \mathbb{R}^{Kd}$ of the microexpress to be predicted, then we can predict its label vector l^{te} by solving the optimization problem as Equ.(8)

$$\min_{l^{te}} \left\| \boldsymbol{l}^{te} - \sum_{i=1}^{K} \hat{\boldsymbol{C}}_{i}^{\mathrm{T}} \boldsymbol{x}_{i}^{te} \right\|_{F}, \quad (8)$$
s.t. $\boldsymbol{l}^{te} \geq 0$; $\boldsymbol{1}^{\mathrm{T}} \boldsymbol{l}^{te} = 1$,

(3)

(9)

where $\hat{\boldsymbol{C}}_i \in \mathbb{R}^{d \times C}$ is the solved regression matrix of *i*-th facial spatial local region, and $\hat{C}^{T} = [\hat{C}_{1}^{T}, \cdots, \hat{C}_{K}^{T}], \hat{C}^{T} \in$ $\mathbb{R}^{C \times Kd}$, $l^{te} \in \mathbb{R}^{C}$. Then we can use Equ.(9) to assign its micro-expression label to the largest entry index of the predict label vector, i.e., micro-expression category \hat{c} .

 $\hat{c} = \arg \max_{i} \{ \boldsymbol{l}_{i}^{te} \}$

4. Experiments and Results

■ **Protocol:** 1. TYPE-I: between every two subsets of SMIC; 2. TYPE-II: between Selected CASME II and every subset of SMIC;

Evaluation metrics: Accuracy and Macro F1-score

■ Hyper-parameter Discussion:

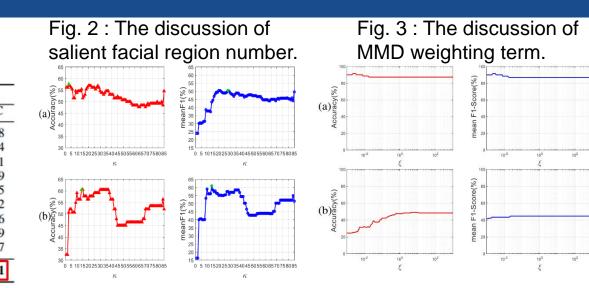
- Salient facial region κ , 1)
- 2) MMD weighting coefficient ξ .
- Visualization: Salient facial regions.

Fig. 1 : The visualization of salient facial regions.

Method	Exp.1($H \rightarrow V$)		Exp.2(V→H)		Exp.3($H \rightarrow N$)		Exp.4(N \rightarrow H)		Exp.5(V \rightarrow N)		Exp.6(N→V)	
	M-F1	ACC	M-F1	ACC	M-F1	ACC	M-F1	ACC	M-F1	ACC	M-F1	ACC
SVM[39]	0.8002	80.28	0.5421	54.27	0.5455	53.52	0.4878	54.88	0.6186	63.38	0.6078	63.38
IW-SVM[40]	0.8868	88.73	0.5852	58.54	0.7469	74.65	0.5427	54.27	0.6620	69.01	0.7228	73.24
TCA[41]	0.8269	83.10	0.5477	54.88	0.5828	59.15	0.5443	57.32	0.5810	61.97	0.6598	67.61
GFK[42]	0.8448	84.51	0.5957	59.15	0.6977	70.42	0.6197	62.80	0.7619	76.06	0.8142	81.69
SA[43]	0.8037	80.28	0.5955	59.15	0.7465	74.65	0.5644	56.10	0.7004	71.83	0.7394	74.65
STM[44]	0.8253	83.10	0.5059	51.22	0.6628	66.20	0.5351	56.10	0.6427	67.61	0.6922	70.42
TKL[45]	0.7742	77.46	0.5738	57.32	0.7051	70.42	0.6116	62.20	0.7558	76.06	0.7580	76.06
TSRG[46]	0.8869	88.73	0.5652	56.71	0.6484	64.79	0.5770	57.93	0.7056	70.42	0.8116	81.69
DRLS[47]	0.8604	85.92	0.6120	60.98	0.6599	66.20	0.5599	55.49	0.6620	69.01	0.5771	61.97
Ours	0.9150	91.55	0.6226	62.20	0.5847	60.56	0.6272	61.59	0.6984	70.42	0.8403	84.51

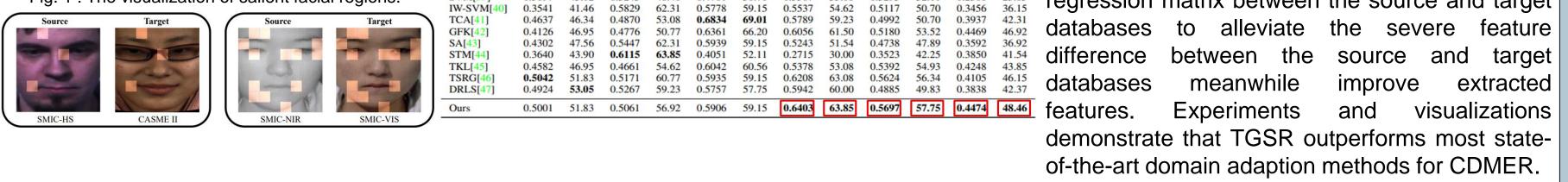
Table. II: The experimental results of TYPE-II CDMER task .

Method	Exp.7(C→H)		Exp.8(H→C)		Exp.9(C→V)		Exp.10(V→C)		Exp.11(C→N)		Exp.12(N-)	
	M-F1	ACC	M-F1	ACC	M-F1	ACC	M-F1	ACC	M-F1	ACC	M-F1	A
SVM[39]	0.3697	45.12	0.3245	48.46	0.4701	50.70	0.5367	53.08	0.5295	52.11	0.2368	23



Conclusion and Discussion

We propose TGSR to seek the salient facial $\frac{1}{ACC}$ regions by learning a shared binary sparse regression matrix between the source and target



ICPR 2022@Montréal Québec, Canada