

# DFEW: A Large-Scale Database for Recognizing Dynamic

# Facial Expression Recognition in the Wild

Xingxun Jiang<sup>#</sup>, Yuan Zong<sup>#</sup>, Wenming Zheng<sup>\*</sup>, Chuangao Tang, Wanchuang Xia, Cheng Lu, Jiateng Liu Southeast University, Nanjing, China

{jiangxingxun, xhzongyuan, wenming\_zheng, tcg2016, xiawanchuag, cheng.lu, Jiateng\_Liu}@seu.edu.cn

### 1. Introduction

- Facial Expression Recognition (FER) is important, but development limited in the real world, or in-the-wild condition.
- **Databases** are investigated, we lack a large-scale well-annotated dynamic facial expression database.
- To solve this problem, we present our database, Dynamic Facial Expression in-the-Wild, called DFEW for short.

### 3. EC-STFL

clarify the blurred margins of unconstrained faces, and alleviate the unbalanced problem, we proposed EC-STFL.

$$L = L_s + \lambda L_{EC-STFL}$$

$$L_{EC-STFL} = \frac{\sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, j \le n, x_j \in \mathcal{N}\{x_i\} \\ \sum_{\substack{1 \le i, x_j \in \mathcal{N}\{$$

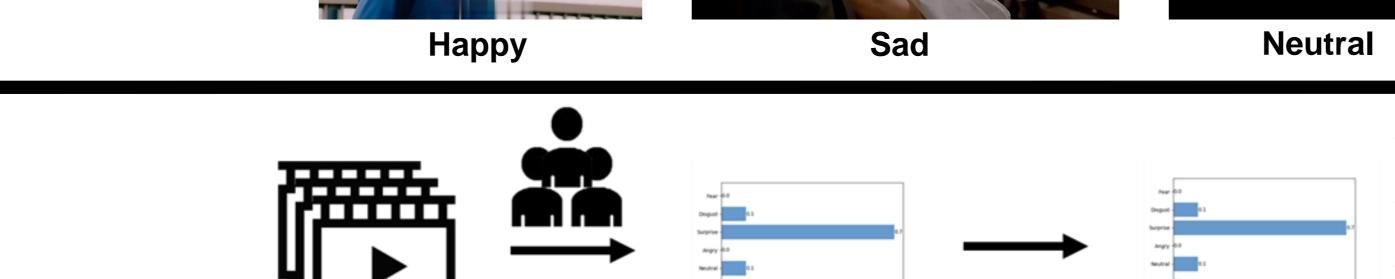
: Softmax loss

 $N\{x_i\}$ : the same labeled set of sample

 $1 \le i, j \le n, x_j \notin \mathcal{N}\{x_i\}$ 

 $x_i$  in mini-batch. : the set size of  $N\{x_i\}$ . : mini-batch size.

### 2. DFEW Database


**Angry** 

7

thousands of challenging video platform movies

expression clips Fig 1. Collection pipeline of DFEW database.

- Clips from movies to mimic our real life
- 1500+ high-definition movies
- Extract clips manually for accurate samples
- Extract at most 20 clips each movie
- Pre-annotation: Check clips whether containing one of the seven typical emotions.
- Additional reward for rare expression samples, i.e., disgust and fear.



Collection

Demo

expression clips

Crowdsourcing **Annotation** single-label multi-label challenging

Fig 2. Annotation pipeline of DFEW database.

expression

Expert crowdsourcing annotation, high-quality and time-saved.

Surprise

- Annotators both from greater China, the same cultural background.
- Ten independent annotators for intensive and reliable annotations.
- Release both multi-label annotation (emotion distribution) and singlelabel annotation

**Disgust** 

expression Fleiss' Kappa Test to evaluate the annotation quality – The annotation is of high quality which annotators are of substantial agreement.

### Table 1: Summary of existing databases of dynamic facial expression in the wild.

|                   | Database          | #Sample | Source        | Expression Distribution | #Annotation Times | Available? |  |
|-------------------|-------------------|---------|---------------|-------------------------|-------------------|------------|--|
| Data              | Aff-Wild          | 298     | Web           | Valence-arousal         | 8                 | Yes<br>Yes |  |
| <b>Statistics</b> | <b>AFEW 7.0</b>   | 1,809   | 54 Movies     | 7 basic expressions     | 2 2               |            |  |
|                   | AFEW-VA           | 600     | AFEW database | Valence-arousal         |                   | Yes        |  |
|                   | CAER              | 13,201  | 79 TVshows    | 7 basic expressions     | 3                 | Yes        |  |
|                   | DFEW              | 16,372  | 1500 movies   | 7 basic expressions     | 10                | Yes        |  |
|                   | Largest! Largest! |         |               | Largest!                |                   |            |  |

Table 2:The basic information of single-labeled DFEW.

| Emotions |      | Dargant |      |       |         |  |
|----------|------|---------|------|-------|---------|--|
| Emotions | 0-2s | 2-5s    | 5s+  | Total | Percent |  |
| Happy    | 852  | 1252    | 384  | 2488  | 20.63   |  |
| Sad      | 440  | 915     | 653  | 2008  | 16.65   |  |
| Neutral  | 832  | 1335    | 542  | 2709  | 22.46   |  |
| Angry    | 762  | 1091    | 376  | 2229  | 18.48   |  |
| Surprise | 691  | 648     | 159  | 1498  | 12.42   |  |
| Disgust  | 71   | 58      | 17   | 146   | 1.22    |  |
| Fear     | 408  | 435     | 138  | 981   | 8.14    |  |
| Total    | 4056 | 5734    | 2269 | 12059 | 100.00  |  |

## 4. Experiments and Results

- **Protocol: 5-fold cross-validation**
- **Evaluation metrics: weighted average recall** (WAR) and unweighted average recall (UAR).
- Benchmark Experiments: C3D, P3D, R3D18, Resnet18, I3D-RGB, VGG11+LSTM, VGG11+LSTM.
- **EC-STFL Experiments: 1. compare with center** loss. 2. hyper-parameter discussion.
- Transfer Task: From action database/ DFEW database to AFEW database.

Table 3: Benchmark results of single-labeled DFEW.

### Table 4: The results of EC-STFL Experiments.

| Model                    | Emotions |       |         |       | Bett     | Better! Metric |       |       |       |
|--------------------------|----------|-------|---------|-------|----------|----------------|-------|-------|-------|
| Model                    | Нарру    | Sad   | Neutral | Angry | Surprise | Disgust        | Fear  | UAR   | WAR   |
| C3D                      | 75.17    | 39.49 | 55.11   | 62.49 | 45.00    | 1.38           | 20.51 | 42.74 | 53.54 |
| C3D, center loss         | 75.62    | 44.67 | 54.18   | 63.14 | 42.21    | 2.07           | 22.17 | 43.44 | 54.17 |
| C3D,EC-STFL              | 75.87    | 49.26 | 54.81   | 61.53 | 45.95    | 3.45           | 24.83 | 45.10 | 55.50 |
| 3D Renset18              | 73.13    | 48.26 | 50.51   | 64.75 | 50.10    | 0.00           | 26.39 | 44.73 | 54.98 |
| 3D Resnet18, center loss | 78.49    | 44.30 | 54.89   | 58.40 | 52.35    | 0.69           | 25.28 | 44.91 | 55.48 |
| 3D Resnet18,EC-STFL      | 79.18    | 49.05 | 57.85   | 60.98 | 46.15    | 2.76           | 21.51 | 45.35 | 56.51 |
|                          |          |       |         |       |          |                |       |       |       |

## Table 5: The results of Transfer Task. C3D C3D, EC-STFL 3D Resnet18 3D Resnet18, EC-STF

53.26 49.66 49.87 49.87

### Conclusion and Discussion

1) We present a large-scale Dynamic Facial Expression in-the-Wild database, called DFEW for short. 2) We give the benchmark of DFEW, and proposed EC-STFL to improve them. Experiments show the stability. 3) Transfer tasks verify the necessity of DFEW database.

### ACM Multimedia 2020@Seattle, Washington USA