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ABSTRACT
Recently, facial expression recognition (FER) in the wild has gained
a lot of researchers’ attention because it is a valuable topic to enable
the FER techniques to move from the laboratory to the real appli-
cations. In this paper, we focus on this challenging but interesting
topic and make contributions from three aspects. First, we present
a new large-scale ’in-the-wild’ dynamic facial expression database,
DFEW (Dynamic Facial Expression in the Wild), consisting of over
16,000 video clips from thousands of movies. These video clips con-
tain various challenging interferences in practical scenarios such
as extreme illumination, occlusions, and capricious pose changes.
Second, we propose a novel method called Expression-Clustered
Spatiotemporal Feature Learning (EC-STFL) framework to deal with
dynamic FER in the wild. Third, we conduct extensive benchmark
experiments on DFEW using a lot of spatiotemporal deep feature
learning methods as well as our proposed EC-STFL. Experimen-
tal results show that DFEW is a well-designed and challenging
database, and the proposed EC-STFL can promisingly improve the
performance of existing spatiotemporal deep neural networks in
coping with the problem of dynamic FER in the wild. Our DFEW
database is publicly available and can be freely downloaded from
https://dfew-dataset.github.io/.
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1 INTRODUCTION
Facial expression is one of the most naturally pre-eminent ways
for human beings to communicate their emotions in daily life [3].
Imagine that if computers were able to understand emotions from
facial expressions as human beings, our human-computer inter-
action (HCI) systems would be more friendly and natural. Due to
this reason, facial expression recognition (FER) has become a hot
research topic among HCI and multimedia analysis communities.
Over the past decades, researchers have proposed a lot of well-
performing methods for recognizing facial expressions, and these
methods achieved promising performance in the lab-controlled en-
vironments [8, 24, 30, 41–43]. However, FER techniques are still far
from the practical applications. One of the main reasons is that the
facial expressions in the lab-controlled scenarios are different from
the real-world ones. The unconstrained real-world facial expression
often suffers from occlusions, illumination variation, pose changes,
and many other unpredictable and challenging interferences, mak-
ing the performance of most existing FER techniques drop sharply.

https://dfew-dataset.github.io/
https://doi.org/10.1145/3394171.3413620
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https://doi.org/10.1145/3394171.3413620


Table 1: Summary of existing databases of dynamic facial expression in the wild.

Database #Sample Source Expression Distribution #Annotation Times Available?

Aff-Wild [17] 298 Web Valence-arousal 8 Yes
AFEW 7.0 [4] 1,809 54 Movies 7 basic expressions 2 Yes
AFEW-VA [18] 600 AFEW database Valence-arousal 2 Yes
CAER [19] 13,201 79 TVshows 7 basic expressions 3 Yes
DFEW 16,372 1500 movies 7 basic expressions 10 Yes

For this reason, many researchers have recently shift- ed their fo-
cus to a challenging but meaningful FER topic, i.e., FER in the
wild, where ’in the wild’ refers to the challenging conditions in
unconstrained real-world environments.

Similar to conventional FER, FER in the wild can be divided into
two types of task according to the form of samples. One is static FER
in the wild, whose aim is to predict the expression category from
unconstrained facial images. The other is dynamic FER in the wild,
in which the data describing the expression information, is the video
clip or image sequence. Inspired by the success of deep learning
in many vision tasks, some researchers have begun to construct
large-scale facial expressions in the wild databases by resorting to
the Internet that contains abundant facial expression resources. For
example, Benitezquiroz et al. [1] collected facial images from the
Internet and then created a large-scale static facial expression in the
wild database called EmotioNet. EmotioNet includes 1,000,000 facial
expression images, in which 25,000 images were manually labeled
with 11 facial Action Units (AUs). Subsequently, Mollahosseini et
al. [28] constructed a much larger-volume database, i.e., AffectNet,
consisting of 450,000 well-labeled facial image samples queried
from the Internet. Recently, Li et al. [20, 21] presented a novel static
facial expression database, RAF-DB, containing nearly 30,000 web-
queried facial images. Compared with EmotioNet and AffectNet, the
major advantage of RAF-DB is the annotation. RAF-DB collectors
hired 315 individuals as the annotators, and each sample in RAF-DB
is labeled about 40 times to ensure its labeling reliability.

Unfortunately, in contrast to the static facial expressions in the
wild, only a few unconstrained dynamic facial expression databases
have been released until now. In the work of [5], Dhall et al. built
a dynamic facial expression in the wild database, i.e., acted facial
expressions in the wild (AFEW), which has been updated to the 7th
version (AFEW 7.0) [4] and consists of 1,809 video clips collected
from 54 movies. Recently, Lee et al. [19] built a large-scale bench-
mark for dynamic FER in the wild, called CAER, by collecting 13,201
video clips from 79 TV shows. Each clip was individually labeled
by three annotators. To the best of our knowledge, CAER is the
first large-scale database of dynamic facial expression in the wild.
However, due to the lack of large-scale databases, the progress of
deep learning methods for dynamic FER in the wild is seriously
hindered. For example, in EmotiW2019, the annual emotion recog-
nition challenge held at ACM ICMI based on the AFEW database, Li
et al. [22] proposed a weighted fusion method integrating multiple
prediction scores learned by different spatiotemporal feature learn-
ing networks, and won the champion. Nevertheless, the accuracy of
the test set they achieved is only 62.78% (7 expression classification

task), which is still at a low level and does not meet the requirement
of practical applications.

In order to remove the barrier of data volume to the research
of dynamic FER in the wild, in this paper, we first present a new
large-scale and well-annotated unconstrained dynamic facial ex-
pression database, DFEW (Dynamic Facial Expression in the Wild).
DFEW can be served as a benchmark for researchers to develop and
evaluate their methods for dealing with dynamic FER in the wild. To
see the characteristics of DFEW, we summarize existing databases
of dynamic facial expressions in the wild in Tab. 1. From Tab. 1, it
can clearly be seen that our DFEW has three major advantages over
existing databases including Aff-Wild [17], AFEW 7.0 [4], AFEW-
VA [18], and CAER [19]. First, DFEW database has currently largest
number of dynamic facial expression samples reaching over 16,000
video clips. Second, the forms of scene and sample in DFEW are
many and varied because its video clips are collected from over
1,500 movies all over the world covering various challenging inter-
ferences, e.g., extreme illuminations, self-occlusions, and capricious
pose changes. Last but not least, each sample in DFEW has been
individually labeled ten times by the annotators under professional
guidance.

In addition to DFEW, we also propose a novel method called
Expression-Clustered Spatiotemporal Feature Learning (EC-STFL)
framework to deal with dynamic FER in the wild. EC-STFL frame-
work can enforce the spatiotemporal deep neural networks, e.g.,
C3D [37] and P3D [32], to better learn discriminative features de-
scribing dynamic facial expressions in the wild. Finally, we establish
a benchmark evaluation protocol for DFEW and conduct extensive
experiments using many spatiotemporal deep learning methods
as well as our proposed EC-STFL. Experimental results show that
the proposed EC-STFL framework can promisingly improve the
performance of existing spatiotemporal neural networks in coping
with FERW problem.
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Figure 1: Overview of the construction and the annotation
of DFEW.
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Figure 2: Examples of seven basic emotions from single-labeled DFEW.

2 DFEW DATABASE
2.1 Data Collection
It is believed that movies originate from and mimic our real life,
hence actresses and actors in movies may have all kinds of un-
constrained facial expressions originally existing in the practical
scenarios. Thus it offers us abundant samples of dynamic facial ex-
pressions. By extracting the video clips containing different facial
expressions from movies, we are able to build a large-scale database
of dyanmic facial expressions in the wild. Following this method,
several dynamic facial expression databases, e.g., Aff-Wild [17],
AFEW [4, 5], and CAER [19] have been successively built and re-
leased over the past few years, which indeed advances the research
of dynamic FER in the wild. In this paper, we also take full advan-
tage of movies to collect unconstrained dynamic facial expression
samples to build our DFEW database.

The pipeline of building the DFEW database is shown in Fig. 1.
As Fig. 1 shows, we first make use of crawler to collect over 1,500
high-definition movies close to our real life and covering various
themes, e.g., comedy, tragedy, war, and love, from the Internet to
serve as the sample source of facial expressions in thewild. Then, we
hired dozens of students to use video editing software to manually
extract video clips containing one of seven basic expressions from
their assigned movies. Note that we made several rules to help
these student extractors ensure the diversity of their extracted facial
expression samples. For example, the students are only allowed
to extract at most 20 video clips from each movie. Meanwhile,
an additional reward would be given to one student if he or she

submitted the samples of relatively rare facial expressions, e.g.,
disgust and fear. Through the abovemethod, we ultimately collected
16,372 unconstrained facial expression video clips.

2.2 Data Annotation
High-quality data annotation is another challenge for the database.
First of all, annotating such a large database is time-consuming and
needs efficient personnel management. Second, though psycholo-
gists P. Ekman believes that the seven basic emotions are universal
and independent of the cultural mismatch [6], culture mismatch
indeed exists and worth considering because the labeling bias can
be removed as far as possible. To efficiently manage annotators and
understand the protagonist’s emotion in clips better, we entrust
the labeling work to the professional crowdsourcing company, JD
crowdsourcing 1, where we hired twelve expert annotators. They
are asked to identify each clip’s closest emotion in seven typical
discrete emotions, i.e., anger, disgust, fear, happy, sad, surprise,
and neutral. Before formal annotation, these twelve annotators are
professionally trained with the emotional knowledges. Then each
clip is annotated by ten independent annotators. After annotation,
we obtained the seven-dimensional emotion vectors or emotion
distribution annotating information of 16,372 clips.

We suppose the seven-dimensional emotion ground truth of 𝑗-th
video clip denoted by 𝐿𝑗 = {𝑙1, ..., 𝑙𝑘 , . . . , 𝑙7}, where 𝑙𝑘 represents
the annotation times of 𝑘-th emotion labeled by annotators, 𝑘 ∈

1http://weigong.jd.com/



{1, 2, 3, 4, 5, 6, 7} refer to happy, sad, neutral, angry, surprise, disgust
and fear, respectively.

Table 2: The basic information of single-labeled DFEW.

Emotions Clips Percent0-2s 2-5s 5s+ Total

Happy 852 1252 384 2488 20.63
Sad 440 915 653 2008 16.65

Neutral 832 1335 542 2709 22.46
Angry 762 1091 376 2229 18.48
Surprise 691 648 159 1498 12.42
Disgust 71 58 17 146 1.22
Fear 408 435 138 981 8.14

Total 4056 5734 2269 12059 100.00

However, not all clips can be further clearly assigned to a spe-
cific single-labeled emotion category from multi-dimensional emo-
tion distribution. Therefore, for accurate labeling, we pick out the
emotion 𝑘 as the single label with respect to 𝑙𝑘 > 𝑟 , where 𝑟 is
the threshold value of annotation times. In this work, we set the
threshold value 𝑟 = 6, hence select 12059 clips of DFEW to be
the single-labeled. We provide basic information of single-labeled
DFEW in Tab. 2, and demo samples of single-labeled DFEW in Fig. 2.
Note that, to promote emotion research, we will release both single-
labeled annotation and seven-dimensional emotion distribution
annotation.

2.3 Agreement Test
In this section, we discuss the quality of emotion annotation based
on Fleiss’s Kappa test [10]. Fleiss’s Kapaa test calculates the degree
of agreement in classification over that which would be expected by
chance. We believe that its result is an excellent index to give anno-
tation’s reliability or quality. In the task of annotating clips, ten in-
dependent individuals annotate each clip with 𝑘 ∈ {1, 2, 3, 4, 5, 6, 7},
i.e., one of the seven typical discrete emotions. Here, we let 𝑛𝑖 𝑗
represent the number of annotators who assigned the 𝑖-th clip
to the 𝑗-th emotion. So we can calculate 𝑝 𝑗 , the proportion of all
assignments which were to the 𝑗-th emotion,


𝑝 𝑗 =

1
𝑁×𝑛

𝑁∑
𝑖=1

𝑛𝑖 𝑗

𝐾∑
𝑗=1

𝑝 𝑗 = 1
(1)

where 𝑛 = 10 is the annotation time of each clips, 𝐾 = 7 is the
number of emotion category, and 𝑁 is the number of clips. And
we can calculate 𝑃𝑖 , the extent to which annotators agree for the
𝑖-th clip, i.e., compute how many annotator-annotator pairs are
in agreement, relative to the number of all possible annotator–
annotator pairs:

𝑃𝑖 =
1

𝑛 × (𝑛 − 1)

(
𝐾∑
𝑗=1

𝑛2
𝑖 𝑗 ) − 𝑛

 (2)

And compute 𝑃 , the mean of 𝑃𝑖 , and 𝑃𝑒 which go into the formula
for coefficient 𝜅:

𝑃 =
1
𝑁

𝑁∑
𝑖=1

𝑃𝑖 (3)

𝑃𝑒 =

𝑘∑
𝑗=1

𝑝2
𝑗 (4)

Then we can calculate 𝜅 by

𝜅 =
𝑃 − 𝑃𝑒
1 − 𝑃𝑒

(5)

We perform Fleiss’s Kapaa test both in the whole DFEW data-
base and the single-labeled part, and we obtain 𝜅 = 0.70 for the
whole DFEW database and 𝜅 = 0.63 for the single-labeled part.
Based on Tab. 3, we believe that all annotators achieve a substantial
agreement. That is to say, our annotation is of high quality.

Table 3: Interpretation of 𝜅 for Fleiss’ Kapaa Test.

𝜅 Interpretation

<0 Poor agreement
0.01-0.20 Slight agreement
0.21-0.40 Fair agreement
0.41-0.60 Moderate agreement
0.61-0.80 Substantial agreement
0.81-1.00 Almost perfect agreement

3 EXPRESSION-CLUSTERED
SPATIOTEMPORAL FEATURE LEARNING

The challenge of dynamic FERW is how to learn robust and discrim-
inative features to describe facial expression video clips, the facial
expression representation of video clips, which are contaminated
by the abnormal conditions, such as variations of illumination, pos-
ture, occlusion and scale. Spatiotemporal features obtained by the
various spatiotemporal neural networks are adept in characterizing
the dynamic face motion in video samples from the spatial stream
and temporal stream. Because of the strong fitting ability of neural
networks, the hierarchical spatiotemporal features perform better
than the traditional methods in the anti-noise problem. Unfortu-
nately, the margin of different emotion features distributed in the
feature space is still blurring due to those abnormal or challeng-
ing conditions. To simultaneously cope with FERW and the make
feature margins clear, we propose an Expression-Clustered Spa-
tiotemporal Feature Learning (EC-STFL) framework, which can be
embedded in the popular spatiotemporal network flexibly. Drawing
on the idea of LDA, the EC-STFL enhances intra-class correlation
and reduces inter-class correlation by designing special similarity
matrices, and is formulated as follows,

min
𝑊

∑
𝑖, 𝑗

𝑃𝑖 𝑗𝜙 (𝑥𝑖 , 𝑥 𝑗 )
𝑄𝑖 𝑗𝜙 (𝑥𝑖 , 𝑥 𝑗 )

(6)

where𝑊 is the network’s weight, matrix 𝑃 and matrix 𝑄 are both
similarity matrices, 𝜙 (𝑥𝑖 , 𝑥 𝑗 ) =

𝑥𝑖 − 𝑥 𝑗  is the spatiotemporal



feature distance of sample 𝑥𝑖 and sample 𝑥 𝑗 , where 𝑥 ∈ R𝑑 is
extracted from the final hidden fully connected layers, i.e., just
before the softmax layer that produces the class prediction. And
the matrix 𝑃 and matrix 𝑄 are defined as follows:

𝑃𝑖 𝑗 =

{
0, if 𝑥𝑖 and 𝑥 𝑗 has the same label
1, otherwise

(7)

𝑄𝑖 𝑗 =

{
0, if 𝑥𝑖 and 𝑥 𝑗 has the different label
1, otherwise

(8)

Obviously, the EC-STFL minimizes the feature distance between
the same emotions and maximize the feature distance between
different emotions to clarify the emotion margin in spatiotempo-
ral feature space. To implement it more effectively and efficiently,
we calculate EC-STFL loss in the mini-batch because of limited
memory. Besides, we note that sample unbalance widely exists in
the FER task [9, 15, 22, 23], which leading the classifiers prefer the
emotions with more samples and ignoring the emotions with fewer
samples. The FER task in our DFEW database also faces this trouble.
Considering that, we develop the EC-STFL loss by adding dynamic
weights to balance different emotions’ loss in the update progress
of batch loss, and extend EC-STFL loss as follows,

𝑙𝑎𝑏𝑒𝑙𝑒𝑞𝑢 : 𝐸𝐶𝑆𝑇𝐹𝐿𝐿𝐸𝐶−𝑆𝑇𝐹𝐿 =

∑
1≤𝑖, 𝑗≤𝑛,𝑥 𝑗 ∈N{𝑥𝑖 }

∥𝑥𝑖−𝑥 𝑗 ∥
𝑁𝑥𝑖∑

1≤𝑖, 𝑗≤𝑛,𝑥 𝑗∉N{𝑥𝑖 }

∥𝑥𝑖−𝑥 𝑗 ∥
𝑁𝑥𝑗

(9)

where N{𝑥𝑖 } is the set of the same single-labeled emotion anno-
tation with 𝑥𝑖 in mini-batch, 𝑁𝑥𝑖 is the set size of N{𝑥𝑖 }, and 𝑛 is
the mini-batch size. Creating the dynamic weights by 𝑁𝑥𝑖 and 𝑁𝑥 𝑗 ,
EC-STFL adjusts and balances the losses of different emotions in
each mini-batch, hence alleviate the imbalance issue of FER task to
some degree.

We adopt joint supervision for training softmax loss and our EC-
STFL loss to obtain the discriminative spatiotemporal features. The
total objective function expressed as 𝐿 = 𝐿𝑠 +𝜆𝐿𝐸𝐶−𝑆𝑇𝐹𝐿 , where 𝐿𝑠
denotes softmax loss and hyper-parameter 𝜆 is a coefficient used
to trade-off 𝐿𝑠 and 𝐿𝐸𝐶−𝑆𝑇𝐹𝐿 . Note that, we drop the backward
step when 𝐿𝐸𝐶−𝑆𝑇𝐹𝐿 has no meaning, i.e., mini-batch only contains
samples with one kind of emotion.

4 EXPERIMENTS
In this section, we give an experimental setup for benchmark first,
including data preprocessing, experimental protocol, and evaluation
metric. Then we conduct extensive spatiotemporal neural network
methods for the investigations of our DFEW database, and these
networks with EC-STFL loss for the verification. Finally, we make
transfer experiments from some widely used action databases and
our DFEW database to AFEW database, to verify DFEW can extract
adequate and efficient transfer knowledge for the FERW task.

4.1 Experimental Setup
Data&Protocol. To better evaluate the single-labeled DFEW

database with 12,059 video clips, we adopt a 5-fold cross-validation
protocol for the benchmarks, which means we split all the samples

into five same-size parts without overlap to conduct experiments.
In each fold (fd1 ∼ fd5), one part of samples are used for testing and
the remaining for training. Finally, all the predicted labels are used
to compute the evaluation metrics by comparing the ground truth.

Preprocessing. First, we use OpenCV to extract image frames
from 12,059 clips, face++ API [33] to acquire face region images and
facial landmarks. We remove the non-face (undetected) frames and
statistics the useful frame rate of clips to eliminate those less than
50%. Totally 362 clips were not taken into consideration. Then, we
use SeetaFace [25] for face affine transformation, which normalizes
faces based on acquired facial landmarks. Finally, we align temporal
length of the remaining clip samples into 16 frames using the time
interpolation method in [44, 45].

Evaluation Metric. We choose two metrics [34] widely used
in existing researches for evaluating the unbalanced problems, i.e.,
the unweighted average recall (UAR, i.e., the accuracy per class di-
vided by the number of classes without considerations of instances
per class) and weighted average recall (WAR, i.e., accuracy). They
are appropriate for the FERW task. The UAR metric indicates the
average accuracy of different facial expressions, and we can ad-
equately evaluate the performance of predicting emotions with
few samples using the UAR results. The WAR metric indicates the
recognition accuracy of overall expressions. We hope to improve
models’ performance both in UAR and WAR metrics.

Implementation Details. In this paper, we employ the PyTorch
framework [31] to implement all models. All models are trained on
12G memory’s Titan Xp with an excellent initial learning rate pro-
vided by the grid search strategy. And the learning rate reduced at a
rate of 10× when loss saturated. First, we train models from scratch
to present the benchmarks. Batch size is set to 24, which is the max
operational batch size of C3D [37] on Titan Xp. We set trade-off
coefficient 𝜆 of models with EC-STFL to 10, and trade-off coefficient
of center loss to 1 × 10−4 according to [40]. Second, we further
discuss EC-STFL about the batch size and trade-off coefficient 𝜆
based on C3D [37] and 3D Resnet18 [12]. These experiments are
conducted on two Titan Xp. Third, we make cross-database transfer
experiments. We finetune some off-the-shelf models initilized by
weights provided by other researchers with the best learning rate.

4.2 Experimental Results
Baseline System. The existing spatiotemporal neural networks

based on RGB frames can be mainly categorized into two groups:
the 3D convolutional neural networks and CNN-RNN networks.
In this paper, we conduct five 3D CNN models, i.e., C3D [37], I3D-
RGB [2], R3D18 [38], 3D Resnet18 [12], P3D [32], and two CNN-
RNN models, i.e., VGG11+LSTM and Resnet18+LSTM for bench-
marks. VGG11 [35] and Resnet18 [13] are slightly modified to fit
the input size of 112 × 112. The classification results are shown
in Tab. 4.

It is seen from Tab. 4 that P3D [32] achieves the best WAR at
54.47%, and 3D Resnet18 [12] achieves the best UAR at 44.73%
among all networks. It is an interesting finding that both UAR and
WAR attained by 3D CNN models instead of CNN-RNN models.
Among seven types of emotions, 3D CNN better predicts happy, sad,
angry, surprise, and fear emotions, while CNN-RNN models better



Table 4: Comparsion of the seven basic emotion classification performance of C3D, P3D, R3D18, 3D Resnet18, I3D-RGB,
VGG11+LSTM, Resnet18+LSTM on DFEW database. The metrics include UAR(unweighted average recall) and WAR(weighted
average recall).

Model Emotions Metric
Happy Sad Neutral Angey Surprise Disgust Fear UAR WAR

C3D [37] 75.17 39.49 55.11 62.49 45.00 1.38 20.51 42.74 53.54
P3D [32] 74.85 43.40 54.18 60.42 50.99 0.69 23.28 43.97 54.47
R3D18 [38] 79.67 39.07 57.66 50.39 48.26 3.45 21.06 42.79 53.22

3D Resnet18 [12] 73.13 48.26 50.51 64.75 50.10 0.00 26.39 44.73 54.98
I3D-RGB [2] 78.61 44.19 56.69 55.87 45.88 2.07 20.51 43.40 54.27

VGG11+LSTM [11, 14, 35] 76.89 37.65 58.04 60.70 43.70 0.00 19.73 42.39 53.70
Resnet18+LSTM [11, 13, 14] 78.00 40.65 53.77 56.83 45.00 4.14 21.62 42.86 53.08

Table 5: Expression recognition performance of different
methods with and without EC-STFL on DFEW database.

Model Metric
UAR WAR

C3D 42.74 53.54
C3D,EC-STFL 45.10 55.50

P3D 43.97 54.47
P3D,EC-STFL 45.22 56.48

R3D18 42.79 53.22
R3D18,EC-STFL 45.05 56.19

3D Resnet18 44.73 54.98
3D Resnet18,EC-STFL 45.35 56.51

I3D-RGB 43.40 54.27
I3D-RGB,EC-STFL 45.05 56.19

VGG11+LSTM 42.39 53.70
VGG11+LSTM,EC-STFL 44.78 56.25

Resnet18+LSTM 42.86 53.08
Resnet18+LSTM,EC-STFL 43.60 54.72

at neural and disgust emotions. One possible reason is that models
learn feature existing preference. From Tab. 4, we can also find that
it is easier to classify the happy emotion while harder to the disgust.
We can also find that happy emotion is more comfortable to be
classified while the disgust is much harder to be well predicted.
It may result from the relatively low variance of intra-class facial
features for the happy emotion while significant variance for the
disgust emotion, or fewer samples of the disgust. In fact, fewer
disgust samples mean more serious imbalance problem, which is a
widely existed problem leading the lousy performance. To the best
of our knowledge, the recognition of disgust emotion is really a
hard problem in the FERW task.

EC-STFL.. To acquire more discriminative features, we design
the EC-STFL and incorporate it with some off-the-shelf 3D convo-
lutional neural networks and CNN-RNN networks. The experiment
results with and without EC-STFL are detailed in Tab. 5. We can

find that all EC-STFL based models show better recognition perfor-
mance than those without this module. Our EC-STFL can promote
the UAR and WAR by an average of 1.61 percentage points and
2.08 percentage points, respectively. What is more, comparing with
the other models from Tab. 5, we can find that 3D Resnet18 with
EC-STFL achieves the best UAR and WAR results.

(a) C3D (b) C3D, EC-STFL

(c) 3DResnet18 (d) 3DResnet18, EC-STFL

Figure 3: The confusion matrices of selected methods
with and without EC-STFL. (a)C3D, (b)C3D with EC-STFL,
(c)3DResnet18, (d)3D Resnet18 with EC-STFL.

We provide the recognition performance of different emotion
detailed by confusion matrices in Fig. 3, to further discuss classi-
fication differences between models with and without EC-STFL.
Displayed in Fig. 3, EC-STFL improves the recall rates of the C3D
model for happy, sad, surprise, disgust, and fear emotion by 0.7%,
9.77%, 0.95%, 2.07%, and 4.32%, respectively. EC-STFL improves the
recall rate of the 3D Resnet18 model for happy, sad, neutral, disgust
by 6.05%, 0.79%, 7.34%, 2.76%, respectively. Results are given in Fig. 3



show that our EC-STFL both improve the recall rate of happy, sad,
disgust for the C3D and 3D Resnet18.

(a) C3D (b) C3D,EC-STFL

Figure 4: The distribution of deeply features in (a) C3D and
(b) C3D with EC-STFL, whose feature dimension is reduced
by tSNE. As can be seen, EC-STFL helps the learned features
more discriminative.

For a better understanding of the learned features by EC-STFL,
we utilize a non-linear mapping method, i.e., t-SNE [27, 39], to
visualize the learned features on a 2D plane, as shown in Fig. 4.
Compared with the models have no EC-STFL module, we observe
that the features learned by EC-STFL show the more significant
inter-class distance between different classes; hence the samples
show a better aggregation effect. It suggests that our proposed
EC-STFL has the ability to promote better feature representation.

The competitor of EC-STFL is mainly the loss inspired by the
idea of clustering, e.g., the well-known “center loss” [40]. In this
paper, we conduct the comparsion experiments based on two spa-
tiotemporal models, i.e., C3D and 3D Resnet18. Tab. 6 contains the
comparsion of center loss and EC-STFL. As is evident from the Tab. 6
that EC-STFL and center loss are both improve the classification
performance of models purely use cross entropy loss. Furthermore,
the EC-STFL performs better than center loss, and achieves the best
UAR and WAR.

Hyper-parameters Discussion. The trade-off hyperparameter
𝜆 and batch size𝑚 affect the performance of EC-STFL, which are
both essential to EC-STFL. So we conduct experiments to evaluate
models’ sensitiveness based on C3D and 3D Resnet18 in the fd1
data split. In the first experiment, we fix batch size𝑚 = 24 and vary
𝜆 ∈ {1, 3, 5, 10, 15, 20, 30, 50, 80, 100}. It is apparent that properly
choosing the value of 𝜆 can improve the verification accuracy of
the learned features. In the second experiment, we fix 𝜆 = 10 and
vary batch size𝑚 ∈ {18, 24, 30, 36, 42, 48}. The WAR or accuracy
results are visible in Fig. 5 and Fig. 6, respectively. Likewise, the
verification performance of EC-STFL based models remain largely
stable across a wide range of batch sizes.

4.3 Transfer Learning
We hypothesize that the DFEW database would contribute to clip-
based emotion classification models’ transfer learning performance
on real-life applications. To verify this hypothesis, we conduct
extensive transfer learning experiments from widely used action
data- bases and our DFEW database to the AFEW [5] database.

(a) C3D, EC-STFL (b) 3DResnet18, EC-STFL

Figure 5: The sensitive experiments results of trade-off pa-
rameter for the proposed EC-STFL framework. (a) C3D with
EC-STFL, (b) 3D Resnet18 with EC-STFL. The scale of trade-
off parameter is 𝜆 ∈ {1, 3, 5, 10, 15, 20, 30, 50, 80, 100}.

(a) C3D, EC-STFl (b) 3DResnet18, EC-STFL

Figure 6: The sensitive experiments results of batch size for
the proposed EC-STFL framework. (a) C3Dwith EC-STFL, (b)
3D Resnet18 with EC-STFL. The scale of batch size is 𝑚 ∈
{18, 24, 30, 36, 42, 48}.

The action databases include UCF101 [36], Sports 1M [16], Kinect
700 [2], and Moments In Time [29]. We select two spatiotemporal
neural networks and their EC-STFL version, i.e., C3D, 3D Resnet18,
and C3D with EC-STFL, 3D Resnet18 with EC-STFL.

We initialize models with the corresponding pre-trained weights
trained from action databases provided by other researchers and
our DFEW database respectively, for example, C3D and C3D with
EC-STFL use pre-trained weights of C3D model. Then finetune all
the layers of network on the AFEW database at a best learning rate
searched by grid strategy. Note that, we choose models’ pre-trained
weights on our DFEW database based on the second data split and
the fifth data split, denoted by fd2 and fd5 for short, respectively.
We use WAR metric as the evaluation and show the transfer results
in Tab. 7. We found that initial weights provided by the DFEW
database show a better transfer learning performance than the
action databases.We further compare our transfer results with those
state-of-the-artsmethods. As results illustrated in Tab. 8, transferred
3D Resnet18 improve the state-of-the-art method on WAR about
2 percent. In this way, we can conclude that our DFEW database
is useful for developing excellent emotion prediction models in
real-life applications.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented a new large-scale unconstrained
dynamic facial expression database, DFEW, and proposed a novel
spatiotemporal deep feature learning framework, EC-STFL, to deal



Table 6: Comparison of EC-STFL and center loss on DFEW database.

Model Emotions Metric
Happy Sad Neutral Angry Surprise Disgust Fear UAR WAR

C3D 75.17 39.49 55.11 62.49 45.00 1.38 20.51 42.74 53.54
C3D, center loss 75.62 44.67 54.18 63.14 42.21 2.07 22.17 43.44 54.17
C3D,EC-STFL 75.87 49.26 54.81 61.53 45.95 3.45 24.83 45.10 55.50

3D Renset18 73.13 48.26 50.51 64.75 50.10 0.00 26.39 44.73 54.98
3D Resnet18, center loss 78.49 44.30 54.89 58.40 52.35 0.69 25.28 44.91 55.48
3D Resnet18,EC-STFL 79.18 49.05 57.85 60.98 46.15 2.76 21.51 45.35 56.51

Table 7: The transfer learning performance on AFEW7.0.

Pretrained Finetuned models
C3D C3D, EC-STFL 3D Resnet18 3D Resnet18, EC-STFL

Sports 1M 41.78 44.91 - -
UCF101 41.25 42.34 - -
Kinect700 - - 49.35 49.61
Kinect700+Moments In Time - - 49.35 49.35
DFEW, fd2 44.91 45.56 53.00 53.26
DFEW, fd5 49.87 49.87 49.61 49.66

Table 8: Comparison of 3DResnet18model’s transfer results
with other state-of-the-art methods on AFEW7.0.

Model WAR

Lu et al. [26] 45.31
Fan et al. [9] 45.43
Hu et al. [15] 46.48
Fan et al. [7] 48.04
Liu et al. [23] 51.44
3D Resnet18,DFEW fd2 53.00
3D Resnet18,EC-STFL,DFEW fd2 53.26

with dynamic FER in the wild. Motion interchange patterns for
action recognition in unconstrained videos. To the best of our
knowledge, our DFEW has the largest number of samples com-
pared with existing databases of dynamic facial expression in the
wild, which containing 16,372 video clips extracted from over 1500
different movies. More importantly, DFEW has provided the reli-
able distribution information of 7 basic expressions for all the video
clips because 10 well-trained annotators independently annotate
each sample of DFEW. We also conducted extensive baseline ex-
periments on DFEW under the well-designed protocol by using
well-performing spatiotemporal deep learning methods as well as
the proposed EC-STFL framework and deeply discussed the results.
Experimental results showed that our DFEW is a promising un-
constrained dynamic facial expression database and the proposed
EC-STFL framework can improve the performance of spatiotempo-
ral deep neural networks in coping with dynamic FER in the wild.
In the future, we will continue to maintain DFEW by collecting

more samples and providing more types of label information such
that DFEW can better promote the progress of FER research.
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